923 resultados para FERROMAGNETIC MONOLAYER FE(110)
Resumo:
AbstractThe purpose of this study was to evaluate the best operating conditions of ICP OES for the determination of Na, Ca, Mg, Sr and Fe in aqueous extract of crude oil obtained after hot extraction with organic solvents (ASTM D 6470-99 modified). Thus, the full factorial design and central composite design were used to optimize the best conditions for the flow of nebulization gas, the flow of auxiliary gas, and radio frequency power. After optimization of variables, a study to obtain correct classification of the 18 samples of aqueous extract of crude oils (E1 to E18) from three production and refining fields was carried out. Exploratory analysis of these extracts was performed by principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), using the original variables as the concentration of the metals Na, Ca, Mg, Sr and Fe determined by ICP OES.
Resumo:
Kirjallisuusarvostelu
Resumo:
Heterobimetallic carbonyl compounds of the type [Fe(CO)4(HgX)2] (X= Cl, Br, I), which have metal-metal bonds, have been prepared in order to study their thermal stabilities as a function of the halogen coordinated to mercury atoms. The characterization of the above complexes was carried out by elemental analysis, IR and NMR spectroscopies. Their thermal behaviour has been investigated and the final product was identified by IR spectroscopy and by X-ray powder diffractogram.
Resumo:
Nitroprussiato de ferro (FeNP) foi sintetisado e caracterizado por Infravermelho e absorção atômica. FeNP foi incorporado em eletrodo de pasta de grafite empregando-se como técnica de estudo a voltametria cíclica. O comportamento eletroquímico do eletrodo de pasta de grafite contendo FeNP apresenta dois processos eletródicos com potencial médio (Em) de (Em)1 = 0,24 V e (Em)2 = 0,85 V ( KCl =1,0M; v = 20 mV.s-1 vs ECS) atribuídos aos pares redox ( FeII/FeIII ) e FeII(CN)5NO/ FeIII(CN)5NO, respectivamente. A intensidade de corrente dos pares redox aumenta, linearmente com a velocidade de varredura indicando um controle de adsorção. O eletrodo de pasta de grafite modificada com FeNP apresenta estabilidade por vários dias. O estudo eletroquímico do eletrodo de pasta de grafite modificada com FeNP foi examinado em várias soluções de eletrólitos suporte sendo que a natureza do cátion afetam a intensidade de corrente e os potenciais dos pares redox ,deslocando (Em)1 para potenciais mais positivos na sequência: K+ >Na+>Li+ enquanto que a natureza do anion (Cl-, NO3-,SO4=) não afeta os pares redox. Os voltamogramas obtidos em diferentes concentrações de KCl (0,05 - 2,5 M)exibem deslocamentos do (Em)1 para potencial de valores mais positivos. Este deslocamento é linear com a variação da concentração do eletrólito suporte. A inclinação da reta é de 66 mV por década de concentração indicando a ocorrência de um processo quase nernstiano. O potencial médio permanece praticamente constante em pH entre os valores de 3,0 e 8,0. Um outro processo eletródico com (Em)3 = 0,47 V ocorre em pH < 3, sendo este atribuído a formação de novas espécies intermediárias.
Resumo:
Este trabalho propõe um método simples, rápido e confiável para determinação direta e simultânea de Al, As, Fe, Mn e Ni em cachaça por espectrometria de absorção atômica em forno de grafite (GFAAS). A superfície superior da plataforma do tubo de grafite foi revestida com filme à base de tungstênio (WxCyOz).O programa de aquecimento otimizado (temperatura, tempo de rampa, tempo de patamar) foi o seguinte: secagem 1 (100ºC, 5 s, 5 s); secagem 2 (120ºC, 5 s, 5 s); pirólise (1300ºC, 10 s, 30 s); atomização (2200ºC, 1 s, 6 s) e limpeza (2550ºC, 1 s, 3s). Os desvios padrões relativos (n=3) foram < 4,4%, < 0,7%, < 11%, < 6,0%, < 1,2% para os elementos Al, As, Fe, Mn e Ni, respectivamente. A exatidão foi avaliada por meio de testes de adição e recuperação dos analitos em 8 amostras de cachaças comerciais, e as recuperações situaram-se nos seguintes intervalos: 80 - 105% (Al), 81 - 92% (As), 82 - 108% (Fe), 83 - 106% (Mn), 83 - 108% (Ni). Os limites de detecção calculados foram 9,7 µg L-1 Al, 2,3 µg L-1 As, 12 µg L-1 Fe, 14 µg L-1 Mn e 0,8 µg L-1 Ni.
Resumo:
This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.
Resumo:
Este trabalho contempla a síntese e caracterização espectroscópica de dois compostos carbonílicos heterometálicos do tipo [Fe(CO)3(m-CS2)(PPh3 )(CuX)], X = Cl, ClO4. Os dados provenientes da espectroscopia no infravermelho e de RMN de 31P{¹H} foram conclusivos quanto à proposição da geometria octaédrica distorcida ao redor do átomo de ferro (0), como também sobre a natureza bimetálica de ambos compostos. Estes dados esclareceram o modo de coordenação dos grupos carbonilos, da trifenilfosfina (PPh3), bem como a disposição do ligante dissulfeto de carbono em ponte entre os átomos de Fe (0) e Cu (I).
Resumo:
Copolymers of methyl methacrylate (MMA) and triethyleneglycol dimethacrylate (TEGDMA) obtained by photoinitiated polymerization using Fe(III) complexes were submitted to thermogravimetry (TGA) under dynamic air atmosphere and N2, and differential scanning calorimetric analysis (DSC). Thermal events were observed only between 90 - 110 ºC. Glass transitions were observed at ca. 100 ºC, followed by an exothermic peak at 170 ºC. The exothermic peak was assigned to a thermal curing process due to the presence of unreacted vinyl groups of the monomers. DSC revealed to be a useful tool to evaluate the curing completeness in this kind of material, using small amounts of sample in relatively short time.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.
Resumo:
The work reported in this thesis is dedicated to irreversible magnetic properties in pyrolytic nanocarbon samples. Based on atomic force microscope images, the samples consist of carbon clusters with radius 30..120 nm. These are treated as single-domain nanoparticles. Magnetic hysteresis, field cooled, zero field cooled and thermoremanent magnetization measurements were performed using an RF SQUID magnetometer and ferromagnetic behaviour was observed. Analysis suggests that the ferromagnetic ordering is associated with defects in a thin surface layer, whose thickness is independent of particle size. Critical radius for single-domain particles, critical radius for coherent rotation, magnetic layer thickness, distance between elementary magnetic moments, saturation magnetization, exchange stiffness constant and anisotropy energy density are also presented.
Resumo:
The use of no tillage system associated with the crop-livestock integration is an alternate managing that promotes the accumulation of dry matter in the soil, an essential fact to make the system sustainable and profitable. The aim of this study was to evaluate the operational performance of a planter-tractor set on maize straws intercropped with Urochloa, in different seeding modes. The soybean crop was seed on the intercropping of two forage species (Urochloa brizantha and Urochloa ruziziensis) in five cropping systems: MBL (Maize with Urochloa in the maize seeding row, mixed with base fertilizer and deposited at 0.10 m), MBE (Maize with Urochloa seeded between rows at the same day of seeding maize), MBC (Urochloa between rows of maize seeded with the covering fertilizer at the V4 stage), MBLA (Maize with Urochloa by broadcast seeding at the V4 stage ) and MS (Single Maize: control). The following variables were evaluated: dry mass of maize straw, dry mass of forages and total dry mass of straw; and for the operational parameters the speed of seeding, wheel slippage, traction force and average power at the drawbar. The results showed that the amount of straw produced by maize intercropping with Urochloa, interferes in the operational performance of the tractor-planter at the operation of soybean seeding, i.e., areas with higher amount of straw promote greater energy demand, as well as higher wheel slippage.
Resumo:
kuv., 20 x 27 cm