995 resultados para FEEDBACK MODE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to verify in man the relationships of muscle glycogen synthase and phosphorylase activities with glycogen concentration that were reported in animal studies. The upper level of glycogen concentration in muscle is known to be tightly controlled, and glycogen concentration was reported to have an inhibitory effect on synthase activity and a stimulatory effect on phosphorylase activity. Glycogen synthase and phosphorylase activity and glycogen concentration were measured in muscle biopsies in a group of nine normal subjects after stimulating an increase of their muscle glycogen concentration through either an intravenous glucose-insulin infusion to stimulate glycogen synthesis, or an Intralipid (Vitrum, Stockholm, Sweden) infusion in the basal state to inhibit glycogen mobilization by favoring lipid oxidation at the expense of glucose oxidation. Phosphorylase activity increased from 71.3 +/- 21.0 to 152.8 +/- 20.0 nmol/min/mg protein (P < .005) after the glucose-insulin infusion. Phosphorylase activity was positively correlated with glycogen concentration (P = .005 and P = .0001) after the glucose-insulin and Intralipid infusions, respectively. Insulin-stimulated glycogen synthase activity was significantly negatively correlated with glycogen concentration at the end of the Intralipid infusion (P < .005). In conclusion, by demonstrating a negative correlation of glycogen concentration with glycogen synthase and a positive correlation with phosphorylase, this study might confirm in man the double-feedback mechanism by which changes in glycogen concentration regulate glycogen synthase and phosphorylase activities. It suggests that this mechanism might play an important role in the regulation of glucose storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

London : Joseph Mawman 1802

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was done to study the reproductive system of papaya hermaphrodite plant based on the histochemical nature of pollen grain, stigma receptivity, in vivo pollen grain germination and pollen:ovule ratio. In the histochemical analysis, pollen grains were stained by using Sudan IV and I2KI solution ; the stigma receptivity was assessed by alpha-naphthtyl acetate solution in closed and opened flowers. Pollen germination and pollen tube growing were examined in flower buds near anthesis with 0.1% aniline blue. To estimate the pollen:ovule ratio , anthers from each flower bud were dissected and all pollen grains were counted; ovules were dissected from ovaries and were counted under stereomicroscope. The results indicated that papaya pollen grains are of lipidic nature; the stigmas were receptive before the opening and until 48 hours after opening; the pollen grains germinated and emitted polinic tube before flower opening and the pollen:ovule ratio indicated the predominance of autogamous reproductive system. These results indicate that hermaphrodite papaya trees is preferentially of optional autogamous with cleistogamy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Englantilaisen tutkimusmatkaajan E. D. Clarken Ahvenanmeren ylitys joulukuussa 1799. - Digitoitu valokuvasta, joka julkaistu kirjassa: R. Knapas & P. Koistinen, Historiallisia kuvia, 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized"default-mode network" (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes.