748 resultados para Explosion.
Resumo:
A source coincident with the position of the type IIb supernova (SN) 2008ax is identified in pre-explosion Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observations in three optical filters. We identify and constrain two possible progenitor systems: (i) a single massive star that lost most of its hydrogen envelope through radiatively driven mass-loss processes, prior to exploding as a helium-rich Wolf-Rayet star with a residual hydrogen envelope, and (ii) an interacting binary in a low-mass cluster producing a stripped progenitor. Late time, high-resolution observations along with detailed modelling of the SN will be required to reveal the true nature of this progenitor star.
Resumo:
We report on new VLT optical spectroscopic and multiwavelength archival observations of SN 1996cr, a previously identified ultraluminous X-ray source known as Circinus galaxy X-2. Our optical spectrum confirms SN 1996cr as a bona fide Type IIn supernova, while archival imaging from the Anglo-Australian Telescope archive isolates the explosion date to between 1995 February 28 and 1996 March 16. SN 1996cr is one of the closest SNe (approximate to 3.8 Mpc) in the last several decades, and in terms of flux ranks among the brightest radio and X-ray SNe ever detected. The wealth of optical, X-ray, and radio observations that exist for this source provide relatively detailed constraints on its postexplosion expansion and progenitor history, including a preliminary angular size constraint from VLBI. Archival X-ray and radio data imply that the progenitor of SN 1996cr evacuated a large cavity just prior to exploding: the blast wave likely spent similar to 1-2 yr in relatively uninhibited expansion before eventually striking the dense circumstellar material which surrounds SN 1996cr. The X-ray and radio emission, which trace the progenitor mass-loss rate, have respectively risen by a factor of greater than or similar to 2 and remained roughly constant over the past 7 years. This behavior is reminiscent of the late rise of SN 1987A, but 1000 times more luminous and much more rapid to onset. SN 1996cr may likewise provide us with a younger example of SN 1978K and SN 1979C, both of which exhibit flat X-ray evolution at late times. Complex oxygen line emission hints at a possible concentric shell or ringlike structure. The discovery of SN 1996cr suggests that a substantial fraction of the closest SNe observed in the last several decades have occurred in wind-blown bubbles, and argues for the phenomena being widespread.
Resumo:
We present spectroscopy and photometry of the He-rich supernova (SN) 2008ax. The early-time spectra show prominent P-Cygni H lines, which decrease with time and disappear completely about 2 months after the explosion. In the same period He I lines become the most prominent spectral features. SN 2008ax displays the ordinary spectral evolution of a Type IIb supernova. A stringent pre-discovery limit constrains the time of the shock breakout of SN 2008ax to within only a few hours. Its light curve, which peaks in the B band about 20 d after the explosion, strongly resembles that of other He-rich core-collapse supernovae. The observed evolution of SN 2008ax is consistent with the explosion of a young Wolf-Rayet (of WNL type) star, which had retained a thin, low-mass shell of its original H envelope. The overall characteristics of SN 2008ax are reminiscent of those of SN 1993J, except for a likely smaller H mass. This may account for the findings that the progenitor of SN 2008ax was a WNL star and not a K supergiant as in the case of SN 1993J, that a prominent early-time peak is missing in the light curve of SN 2008ax, and that H alpha is observed at higher velocities in SN 2008ax than in SN 1993J.
Resumo:
The only supernovae (SNe) to show gamma-ray bursts ( GRBs) or early x-ray emission thus far are overenergetic, broad- lined type Ic SNe ( hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximate to 6 x 10(51) erg) and ejected mass [similar to 7 times the mass of the Sun ( M.)] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a similar to 30 M. star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.
Resumo:
Images of the site of the Type Ic supernova (SN) 2002ap taken before explosion were analysed previously by Smartt et al. We have uncovered new unpublished, archival pre-explosion images from the Canada-France-Hawaii Telescope (CFHT) that are vastly superior in depth and image quality. In this paper we present a further search for the progenitor star of this unusual Type Ic SN. Aligning high-resolution Hubble Space Telescope observations of the SN itself with the archival CFHT images allowed us to pinpoint the location of the progenitor site on the groundbased observations. We find that a source visible in the B- and R-band pre-explosion images close to the position of the SN is (1) not coincident with the SN position within the uncertainties of our relative astrometry and (2) is still visible similar to 4.7-yr post-explosion in late-time observations taken with the William Herschel Telescope. We therefore conclude that it is not the progenitor of SN 2002ap. We derived absolute limiting magnitudes for the progenitor of M-B >= -4.2 +/- 0.5 and M-R >= -5.1 +/- 0.5. These are the deepest limits yet placed on a Type Ic SN progenitor. We rule out all massive stars with initial masses greater than 7-8 M-circle dot (the lower mass limit for stars to undergo core collapse) that have not evolved to become Wolf-Rayet stars. This is consistent with the prediction that Type Ic SNe should result from the explosions of Wolf-Rayet stars. Comparing our luminosity limits with stellar models of single stars at appropriate metallicity (Z = 0.008) and with standard mass-loss rates, we find no model that produces a Wolf-Rayet star of low enough mass and luminosity to be classed as a viable progenitor. Models with twice the standard mass-loss rates provide possible single star progenitors but all are initially more massive than 30-40 M-circle dot. We conclude that any single star progenitor must have experienced at least twice the standard mass-loss rates, been initially more massive than 30-40 M-circle dot and exploded as a Wolf-Rayet star of final mass 10-12 M-circle dot. Alternatively a progenitor star of lower initial mass may have evolved in an interacting binary system. Mazzali et al. propose such a binary scenario for the progenitor of SN 2002ap in which a star of initial mass 15-20 M-circle dot is stripped by its binary companion, becoming a 5 M-circle dot Wolf-Rayet star prior to explosion. We constrain any possible binary companion to a main-sequence star of
Resumo:
We calculate the predicted UBVRIJHK absolute magnitudes for models of supernova progenitors and apply the result to the case of supernova 2005cs. We agree with previous results that the initial mass of the star was low, around 6 to 8 M-circle dot. However, such stars are thought to go through a second dredge-up to become asymptotic giant branch (AGB) stars. We show that had this occurred to the progenitor of 2005cs it would have been observed in JHK pre-explosion images. The progenitor was not detected in these bands and therefore we conclude that it was not an AGB star. Furthermore, if some AGB stars do produce supernovae they will have a clear signature in pre-explosion near-infrared images. Electron-capture supernovae are thought to occur in AGB stars, hence the implication is that 2005cs was not an electron-capture supernova but was the collapse of an iron core.
Resumo:
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion Hubble Space Telescope (HST) images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/- 4.3, 21.4 +/- 3.5 and 25.1 +/- 1.7 Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the brightest supergiants method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/- 3.4 Mpc. Using this distance, we estimate that the ejected nickel mass in the explosion is 0.046(-0.017)(+0.031) M-circle dot. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of m(F814W) = 24.3 +/- 0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(-2)(+3) M-circle dot. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12M(circle dot) for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd (8(-2)(+4) M circle dot) and 2005cs (9(-2)(+3) M-circle dot).
Resumo:
The progenitor of SN 2005cs, in the galaxy M51, is identified in pre-explosion Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) imaging. Differential astrometry, with post-explosion ACS High Resolution Channel (HRC) F555W images, permitted the identification of the progenitor with an accuracy of 0.006 arcsec. The progenitor was detected in the F814W pre-explosion image with I = 23.3 +/- 0.2, but was below the detection thresholds of the F435W and F555W images, with B
Resumo:
We report on our attempts to locate the progenitor of the Type Ic supernova SN 2004gt in NGC 4038. We use high-resolution HST ACS images of SN 2004gt and have compared them with deep pre-explosion HST WFPC2 F336W, F439W, F555W, and F814W images. We identify the SN location on the pre-explosion frames with an accuracy of 5 mas. We show that the progenitor is below the detection thresholds of all the pre-explosion images. These detection limits are used to place luminosity and mass limits on the progenitor. The progenitor of SN 2004gt seems to be restricted to a low-luminosity high-temperature star, either a single WC star with an initial mass of > 40 M-circle dot or a low-mass star in a binary. The pre-explosion data cannot distinguish between the two scenarios.
Resumo:
The search for the progenitors of six core-collapse supernovae (CCSNe) in archival Hubble Space Telescope (HST) WFPC2 pre-explosion imaging is presented. These SNe are 1999an, 1999br, 1999ev, 2000ds, 2000ew and 2001B. Post-explosion imaging of the SNe, with the HST ACS/WFC, has been utilized with the technique of differential astrometry to identify the progenitor locations on the pre-explosion imaging. SNe 1999br, 1999ev, 2000ew and 2001B are recovered in late-time imaging, and estimates of the progenitor locations on the pre-explosion imaging, with subpixel accuracy, have been made. Only the progenitor of the Type II-P SN 1999ev has been recovered, on pre-explosion F555W imaging, at a 4.8 sigma significance level. Assuming a red supergiant progenitor, the pre-explosion observation is consistent with M-ZAMS = 15-18 M-circle dot. The progenitors of the other five SNe were below the 3 sigma detection threshold of the pre-explosion observations. The detection thresholds were translated to mass limits for the progenitors by comparison with stellar evolution models. Pre-explosion observations of the peculiarly faint SN 1999br limit the mass of a red supergiant progenitor to M-ZAMS
Resumo:
The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion(1-3). Unless the companion star is another white dwarf ( in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova(4,5) is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0 - G2 star, similar to our Sun in surface temperature and luminosity ( but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.
Resumo:
The supernova SN 2001du was discovered in the galaxy NGC 1365 at a distance of 19 +/- 2 Mpc, and is a core-collapse event of Type II-P. Images of this galaxy, of moderate depth, have been taken with the Hubble Space Telescope approximately 6.6 yr before discovery and include the supernova position on the WFPC2 field of view. We have observed the supernova with the WFPC2 to allow accurate differential astrometry of SN 2001du on the pre-explosion frames. As a core-collapse event it is expected that the progenitor was a massive, luminous star. There is a marginal detection (3sigma) of a source close to the supernova position on the pre-discovery V -band frame, but it is not precisely coincident and we do not believe it to be a robust detection of a point source. We conclude that there is no stellar progenitor at the supernova position and derive sensitivity limits of the pre-discovery images that provide an upper mass limit for the progenitor star. We estimate that the progenitor had a mass of less than 15 M-circle dot . We revisit two other nearby Type II-P supernovae that have high-quality pre-explosion images, and refine the upper mass limits for the progenitor stars. Using a new distance determination for SN 1999gi from the expanding photosphere method, we revise the upper mass limit to 12 M-circle dot . We present new HST images of the site of SN 1999em, which validate the use of lower spatial resolution ground-based images in the progenitor studies and use a new Cepheid distance to the galaxy to measure an upper mass limit of 15 M-circle dot for that progenitor. Finally we compile all the direct information available for the progenitors of eight nearby core-collapse supernovae and compare their mass estimates. These are compared with the latest stellar evolutionary models of pre-supernova evolution which have attempted to relate metallicity and mass to the supernovae type. Although this is statistically limited at present, reasonable agreement is already found for the lower-mass events (generally the II-P), but some discrepancies appear at higher masses.
Resumo:
Masses and progenitor evolutionary states of Type II supernovae remain almost unconstrained by direct observations. Only one robust observation of a progenitor (SN 1987A) and one plausible observation (SN 1993J) are available. Neither matched theoretical predictions, and in this Letter we report limits on a third progenitor (SN 1999gi). The Hubble Space Telescope (HST) has imaged the site of the Type II-P supernova SN 1999gi with the Wide Field Planetary Camera 2 (WFPC2) in two filters (F606W and F300W) prior to explosion. The distance to the host galaxy (NGC 3184) of 7.9 Mpc means that the most luminous, massive stars are resolved as single objects in the archive images. The supernova occurred in a resolved, young OB association 2.3 kpc from the center of NGC 3184 with an association age of about 4 Myr. Follow-up images of SN 1999gi with WFPC2 taken 14 months after discovery determine the precise position of the supernova on the preexplosion frames. An upper limit of the absolute magnitude of the progenitor is estimated (M-v greater than or equal to -5.1). By comparison with stellar evolutionary tracks, this can be interpreted as a stellar mass, and we determine an upper mass limit of 9(-2)(+3) M.. We discuss the possibility of determining the masses or mass limits for numerous nearby core-collapse supernovae using the HST archive enhanced by our current SNAP program.
Resumo:
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2-3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After similar to 100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15 +/-0.05 M-. of Ni-56 which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K-L'=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.
Resumo:
Privacy has now become a major topic not only in law but in computing, psychology, economics and social studies, and the explosion in scholarship has made it difficult for the student to traverse the field and identify the significant issues across the many disciplines. This series brings together a collection of significant papers with a multi-disciplinary approach which enable the reader to navigate through the complexities of the issues and make sense of the prolific scholarship published in this field.
The three volumes in this series address different themes: an anthropological approach to what privacy means in a cultural context; the issue of state surveillance where the state must both protect the individual and protect others from that individual and also protect itself; and, finally, what privacy might mean in a world where government and commerce collect data incessantly. The regulation of privacy is continually being called for and these papers help enable understanding of the ethical rationales behind the choices made in the sphere of regulation of privacy.
The articles presented in each of these collections have been chosen for the quality of their scholarship and their utility to the researcher, and feature a variety of approaches. The articles which debate the technical context of privacy are accessible to those from the arts and humanities; overall, the breadth of approach taken in the choice of articles has created a series which is an invaluable and important resource for lecturers, researchers and student.