990 resultados para Estadística aplicada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical statistical study of the wind speed in the atmospheric surface layer is made generally from the analysis of the three habitual components that perform the wind data, that is, the component W-E, the component S-N and the vertical component, considering these components independent. When the goal of the study of these data is the Aeolian energy, so is when wind is studied from an energetic point of view and the squares of wind components can be considered as compositional variables. To do so, each component has to be divided by the module of the corresponding vector. In this work the theoretical analysis of the components of the wind as compositional data is presented and also the conclusions that can be obtained from the point of view of the practical applications as well as those that can be derived from the application of this technique in different conditions of weather

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper sets out to identify the initial positions of the different decision makers who intervene in a group decision making process with a reduced number of actors, and to establish possible consensus paths between these actors. As a methodological support, it employs one of the most widely-known multicriteria decision techniques, namely, the Analytic Hierarchy Process (AHP). Assuming that the judgements elicited by the decision makers follow the so-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al., 1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknown variance, a Bayesian approach is used in the estimation of the relative priorities of the alternatives being compared. These priorities, estimated by way of the median of the posterior distribution and normalised in a distributive manner (priorities add up to one), are a clear example of compositional data that will be used in the search for consensus between the actors involved in the resolution of the problem through the use of Multidimensional Scaling tools

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First application of compositional data analysis techniques to Australian election data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precision of released figures is not only an important quality feature of official statistics, it is also essential for a good understanding of the data. In this paper we show a case study of how precision could be conveyed if the multivariate nature of data has to be taken into account. In the official release of the Swiss earnings structure survey, the total salary is broken down into several wage components. We follow Aitchison's approach for the analysis of compositional data, which is based on logratios of components. We first present diferent multivariate analyses of the compositional data whereby the wage components are broken down by economic activity classes. Then we propose a number of ways to assess precision

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a procedure that allows us to determine the preference structures (PS) associated to each of the different groups of actors that can be identified in a group decision making problem with a large number of individuals. To that end, it makes use of the Analytic Hierarchy Process (AHP) (Saaty, 1980) as the technique to solve discrete multicriteria decision making problems. This technique permits the resolution of multicriteria, multienvironment and multiactor problems in which subjective aspects and uncertainty have been incorporated into the model, constructing ratio scales corresponding to the priorities relative to the elements being compared, normalised in a distributive manner (wi = 1). On the basis of the individuals’ priorities we identify different clusters for the decision makers and, for each of these, the associated preference structure using, to that end, tools analogous to those of Multidimensional Scaling. The resulting PS will be employed to extract knowledge for the subsequent negotiation processes and, should it be necessary, to determine the relative importance of the alternatives being compared using anyone of the existing procedures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of tin deposits from Priamurye (Russia) is performed to analyze the differences between them based on their origin and also on commercial criteria. A particular analysis based on their vertical zonality is also given for samples from Solnechnoe deposit. All the statistical analysis are made on the subcomposition formed by seven trace elements in cassiterite (In, Sc, Be, W, Nb, Ti and V) using the Aitchison’ methodology of analysis of compositional data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In any discipline, where uncertainty and variability are present, it is important to have principles which are accepted as inviolate and which should therefore drive statistical modelling, statistical analysis of data and any inferences from such an analysis. Despite the fact that two such principles have existed over the last two decades and from these a sensible, meaningful methodology has been developed for the statistical analysis of compositional data, the application of inappropriate and/or meaningless methods persists in many areas of application. This paper identifies at least ten common fallacies and confusions in compositional data analysis with illustrative examples and provides readers with necessary, and hopefully sufficient, arguments to persuade the culprits why and how they should amend their ways

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Discriminant function analysis (DFA) is not a new idea in the study of tephrochrology. In this paper, DFA is applied to compositional datasets of two different types of tephras from Mountain Ruapehu in New Zealand and Mountain Rainier in USA. The canonical variables from the analysis are further investigated with a statistical methodology of change-point problems in order to gain a better understanding of the change in compositional pattern over time. Finally, a special case of segmented regression has been proposed to model both the time of change and the change in pattern. This model can be used to estimate the age for the unknown tephras using Bayesian statistical calibration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several eco-toxicological studies have shown that insectivorous mammals, due to their feeding habits, easily accumulate high amounts of pollutants in relation to other mammal species. To assess the bio-accumulation levels of toxic metals and their in°uence on essential metals, we quantified the concentration of 19 elements (Ca, K, Fe, B, P, S, Na, Al, Zn, Ba, Rb, Sr, Cu, Mn, Hg, Cd, Mo, Cr and Pb) in bones of 105 greater white-toothed shrews (Crocidura russula) from a polluted (Ebro Delta) and a control (Medas Islands) area. Since chemical contents of a bio-indicator are mainly compositional data, conventional statistical analyses currently used in eco-toxicology can give misleading results. Therefore, to improve the interpretation of the data obtained, we used statistical techniques for compositional data analysis to define groups of metals and to evaluate the relationships between them, from an inter-population viewpoint. Hypothesis testing on the adequate balance-coordinates allow us to confirm intuition based hypothesis and some previous results. The main statistical goal was to test equal means of balance-coordinates for the two defined populations. After checking normality, one-way ANOVA or Mann-Whitney tests were carried out for the inter-group balances

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low concentrations of elements in geochemical analyses have the peculiarity of being compositional data and, for a given level of significance, are likely to be beyond the capabilities of laboratories to distinguish between minute concentrations and complete absence, thus preventing laboratories from reporting extremely low concentrations of the analyte. Instead, what is reported is the detection limit, which is the minimum concentration that conclusively differentiates between presence and absence of the element. A spatially distributed exhaustive sample is employed in this study to generate unbiased sub-samples, which are further censored to observe the effect that different detection limits and sample sizes have on the inference of population distributions starting from geochemical analyses having specimens below detection limit (nondetects). The isometric logratio transformation is used to convert the compositional data in the simplex to samples in real space, thus allowing the practitioner to properly borrow from the large source of statistical techniques valid only in real space. The bootstrap method is used to numerically investigate the reliability of inferring several distributional parameters employing different forms of imputation for the censored data. The case study illustrates that, in general, best results are obtained when imputations are made using the distribution best fitting the readings above detection limit and exposes the problems of other more widely used practices. When the sample is spatially correlated, it is necessary to combine the bootstrap with stochastic simulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is almost not a case in exploration geology, where the studied data doesn’t includes below detection limits and/or zero values, and since most of the geological data responds to lognormal distributions, these “zero data” represent a mathematical challenge for the interpretation. We need to start by recognizing that there are zero values in geology. For example the amount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-exists with nepheline. Another common essential zero is a North azimuth, however we can always change that zero for the value of 360°. These are known as “Essential zeros”, but what can we do with “Rounded zeros” that are the result of below the detection limit of the equipment? Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimes we need to differentiate between a sodic and a potassic alteration. Pre-classification into groups requires a good knowledge of the distribution of the data and the geochemical characteristics of the groups which is not always available. Considering the zero values equal to the limit of detection of the used equipment will generate spurious distributions, especially in ternary diagrams. Same situation will occur if we replace the zero values by a small amount using non-parametric or parametric techniques (imputation). The method that we are proposing takes into consideration the well known relationships between some elements. For example, in copper porphyry deposits, there is always a good direct correlation between the copper values and the molybdenum ones, but while copper will always be above the limit of detection, many of the molybdenum values will be “rounded zeros”. So, we will take the lower quartile of the real molybdenum values and establish a regression equation with copper, and then we will estimate the “rounded” zero values of molybdenum by their corresponding copper values. The method could be applied to any type of data, provided we establish first their correlation dependency. One of the main advantages of this method is that we do not obtain a fixed value for the “rounded zeros”, but one that depends on the value of the other variable. Key words: compositional data analysis, treatment of zeros, essential zeros, rounded zeros, correlation dependency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The log-ratio methodology makes available powerful tools for analyzing compositional data. Nevertheless, the use of this methodology is only possible for those data sets without null values. Consequently, in those data sets where the zeros are present, a previous treatment becomes necessary. Last advances in the treatment of compositional zeros have been centered especially in the zeros of structural nature and in the rounded zeros. These tools do not contemplate the particular case of count compositional data sets with null values. In this work we deal with \count zeros" and we introduce a treatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichlet probability distribution as a prior and we estimate the posterior probabilities. Then we apply a multiplicative modi¯cation for the non-zero values. We present a case study where this new methodology is applied. Key words: count data, multiplicative replacement, composition, log-ratio analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical analysis of compositional data should be treated using logratios of parts, which are difficult to use correctly in standard statistical packages. For this reason a freeware package, named CoDaPack was created. This software implements most of the basic statistical methods suitable for compositional data. In this paper we describe the new version of the package that now is called CoDaPack3D. It is developed in Visual Basic for applications (associated with Excel©), Visual Basic and Open GL, and it is oriented towards users with a minimum knowledge of computers with the aim at being simple and easy to use. This new version includes new graphical output in 2D and 3D. These outputs could be zoomed and, in 3D, rotated. Also a customization menu is included and outputs could be saved in jpeg format. Also this new version includes an interactive help and all dialog windows have been improved in order to facilitate its use. To use CoDaPack one has to access Excel© and introduce the data in a standard spreadsheet. These should be organized as a matrix where Excel© rows correspond to the observations and columns to the parts. The user executes macros that return numerical or graphical results. There are two kinds of numerical results: new variables and descriptive statistics, and both appear on the same sheet. Graphical output appears in independent windows. In the present version there are 8 menus, with a total of 38 submenus which, after some dialogue, directly call the corresponding macro. The dialogues ask the user to input variables and further parameters needed, as well as where to put these results. The web site http://ima.udg.es/CoDaPack contains this freeware package and only Microsoft Excel© under Microsoft Windows© is required to run the software. Kew words: Compositional data Analysis, Software

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The R-package “compositions”is a tool for advanced compositional analysis. Its basic functionality has seen some conceptual improvement, containing now some facilities to work with and represent ilr bases built from balances, and an elaborated subsys- tem for dealing with several kinds of irregular data: (rounded or structural) zeroes, incomplete observations and outliers. The general approach to these irregularities is based on subcompositions: for an irregular datum, one can distinguish a “regular” sub- composition (where all parts are actually observed and the datum behaves typically) and a “problematic” subcomposition (with those unobserved, zero or rounded parts, or else where the datum shows an erratic or atypical behaviour). Systematic classification schemes are proposed for both outliers and missing values (including zeros) focusing on the nature of irregularities in the datum subcomposition(s). To compute statistics with values missing at random and structural zeros, a projection approach is implemented: a given datum contributes to the estimation of the desired parameters only on the subcompositon where it was observed. For data sets with values below the detection limit, two different approaches are provided: the well-known imputation technique, and also the projection approach. To compute statistics in the presence of outliers, robust statistics are adapted to the characteristics of compositional data, based on the minimum covariance determinant approach. The outlier classification is based on four different models of outlier occur- rence and Monte-Carlo-based tests for their characterization. Furthermore the package provides special plots helping to understand the nature of outliers in the dataset. Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator, robustness, rounded zeros