981 resultados para Eskander, Saad
Resumo:
Calcium ions are widely accepted as critically important in responses of neurons to a stimulus. We have show previously the central involvement of angiotensin II (ANGII) in water intake. This study determined whether voltage-dependent calcium channels are involved in ANGII-induced behavioral drinking implicating nitrergic mechanism. The antidipsogenic actions of L-type calcium channel antagonists nifedipine, on ANGII-induced drinking behavior were studied when it is injected into the median preoptic nucleus (MnPO). The influence of nitric oxide (NO) on nifedipine antidipsogenic action was also studied by utilizing the N-W-nitro-L-arginine methyl ester (L-NAME) a constitutive nitric oxide synthase inhibitor constitutive (cNOSI) and 7-nitroindazol (7-NIT) a specific neuronal nitric oxide synthase inhibitor (nNOSI) and L-arginine a NO donor. Rats 200-250 g, with cannulae implanted into MnPO, pre-treated into MnPO with either nifedipine, followed by ANGII, drank significantly less water than controls during the first 15 min after injection. However, L-NAME potentiated the dipsogenic effect of ANGII that is blocked by prior injection of nifedipine and L-arginine. 7-NIT injected prior to ANGII into MnPO also potentiated the dipsogenic effect of ANGII but with a less intensity than L-NAME that it is also blocked by prior injection of nifedipine. The results described in this paper provide evidence that calcium channels play important roles in the ANGII-induced behavioral water intake. The structures containing NO in the brain such as MnPO include both endothelial cells and neurons might be responsible for the influence of nifedipine on dipsogenic effect of ANGII. These data shows the correlation between L-type calcium channel and a free radical gas NO produced endogenously from amino acids L-arginine by endothelial and neuronal NO synthase in the control of ANGII-dipsogenic effect. This suggests that an L-type calcium channel participates in both short- and longer-term neuronal actions of ANGII by nitrergic way. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this study, we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (AAVP) an antagonist of V-1 receptors of arginine(8)-vasopressin (AVP) and the effects of losartan and CGP42112A (selective ligands of the AT, and AT, angiotensin receptors, respectively) injections into the paraventricular nucleus (PVN) on the thirst effects of AVP stimulation of the lateral septal area (LSA). AVP injection into the LSA increased the water intake in a dose-dependent manner. AAVP injected into the PVN produced a dose-dependent reduction of the drinking responses elicited by LSA administration of AVP. Both the AT(1) and AT(2) ligands administered into the PVN elicited a concentration-dependent inhibition in the water intake induced by AVP injected into the LSA, but losartan was more effective than CGP42112A the increase in the AVP response. These results indicate that LSA dipsogenic effects induced by AVP are mediated primarily by PVN AT(1) receptors. However, doses of losartan were more effective when combined with CGP42112A than when given alone, suggesting that the thirst induced by AVP injections into LSA may involve activation of multiple angiotensin II (ANG II) receptor subtypes. These results also suggests that facilitatory effects of AVP on water intake into the LSA are mediated through the activation of V-receptors and that the inhibitory effect requires V-receptors. Based on the present findings, we suggest that the administration of AVP into the LSA may play a role in the PVN control of water control. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their supraoptic nucleus (SON). We investigated the effects of the injection into the supraoptic nucleus (SON) of FK 409, a nitric oxide donor, and N(W-)nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (NOS), on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine, which was injected into SON. The drugs were injected in 0.5 mul volume over 30-60 s. Controls was injected with a similar volume of 0.15 M NaCl. FK 409 and L-NAME were injected at doses of 20 mug/0.5 mul and 40 mug/0.5 mul. respectively. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into SON. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into SON produced a dose-dependent increase in salivary secretion. L-NAME was injected into SON prior to the injection of pilocarpine into SON, producing an increase in salivary secretion due to the effect of pilocarpine. FK 409 injected into SON attenuating the increase in salivary secretion induced by pilocarpine. Mean arterial pressure (MAP) increase after injections of pilocarpine into the SON. L-NAME injected into the SON prior to injection of pilocarpine into SON increased the MAP. FK 409 injected into the SON prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (0.5 mumol/0.5 mul) injected into the SON induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the SON increased the urinary sodium excretion and urinary volume induced by pilocarpine. FK 409 injected prior to pilocarpine into the SON decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the SON. In summary the present results show: a) SON is involved in pilocarpine-induced salivation; b) that mechanism involves increase in MAP, sodium excretion and urinary volume. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125,0 mg and zolazepan chloridrate 125,0 mg) into quadriceps muscle and submitted an electrolytic lesion of the lateral hypothalamus (LH) and a stainless steel cannula was implanted into their median preoptic nucleus (MnPO). We investigated the effects of the injection into the (MnPO) of FK 409 (20 mug/0.5 mul), a nitric oxide (NO) donor, and N-W-nitro-L-arginine methyl ester (L-NAME) 40 mug/0.5 mul, a nitric oxide synthase inhibitor (NOSI), on the water and sodium appetite and the natriuretic, diuretic and cardiovascular effects induced by injection of L-NAME and FK 409 injected into MnPO in rats with LH lesions. Controls were injected with a similar volume of 0.15 M NaCl. L-NAME injected into MnPO produced an increase in water and sodium intake and in sodium and urine excretion and increase de mean arterial pressure (MAP). FK 409 injected into MnPO did not produce any change in the hydro electrolytic and cardiovascular parameters in LH-sham and lesioned rats. FK 409 injected before L-NAME attenuated its effects. These data show that electrolytic lesion of the LH reduces fluid and sodium intake as well as sodium and urine excretion, and the pressor effect induced by L-NAME. LH involvement with NO of the MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
The specific arginine(8)-vasopressin (AVP) V, receptors antagonist (AAVP) was injected (20, 40 and 80 nmol) into the lateral septal area (LSA) to determine the effects of selective septal V, receptor on water and 3% sodium intake in rats. Was also observed the effects of losartan and CGP42112A (select ligands of the AT(1) and AT(2) ANG II receptors, respectively) injected into LSA prior AVP on the same appetites. Twenty-four hours before the experiments, the rats were deprived of water. The volume of drug solution injected was 0.5 mul. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2,0 h. Injection of AVP reduced the water and sodium ingestion vs. control (0.15 M saline). Pre-treatment with AAVP (40, 80 and 160 nmol) did not alter the decrease in the water ingestion induced by AVP, whereas AAVP abolished the action of AVP-induced sodium intake. Losartan (40, 80 and 160 nmol) did not alter the effect of AVP on water and sodium intake, whereas CGP42112A (20, 40 and 60 nmol) at the first 30 min increased water ingestion. Losartan and CGP42112A together increased the actions of AVP, showing more pronounced effects than when the two antagonists were injected alone. The results showed that AVP inhibited the appetites and these effects were increased by the AAVP. The involvement of angiotensinergic receptors in the effects of AVP is also suggested. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. on the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction. Brain arginine(8)-vasopressin (AVP), through the V-1a- and V-2-receptors, is essential for the maintenance of mean arterial pressure (MAP). Central AVP interacts with the components of the renin-angiotensin system, which participate in MAP regulation. This study all to determine the effects of V-1a-, V-2- and V-1a/V-2-AVP selective antagonists and AT(1)- and AT(2)-angiotensin II (Ang II) selective antagonists on the MAP induced by AVP injected into the medial septal area (MSA) of the brain.Materials and methods. Male Holtzman rats with stainless steel cannulae implanted into the MSA were used in experiments. Direct MAP was recorded in Conscious rats.Results. AVP administration into the MSA caused a prompt and potent pressor response in a dose-dependent fashion. Pretreatment with the V-1a- and V-2-antagonists reduced, whereas prior injection of the V-1a/V-2-antagonist induced a decrease in the MAP that remained below the baseline. Both AT(1)- and AT(2)-antagonists elicited a decrease, While simultaneous injections of two antagonists were more effective in decreasing the MAP induced AVP.Conclusion. These results indicate there is a synergism bell the V-1a- and V-2-AVP, and AT(1)- AT, and AT(2)-Ang II receptors in the MSA in the regulation of MAP.
Resumo:
The 5-hydroxytryptamine (5-HT)(1A) receptor system plays a prominent role in a variety of physiological functions and behavior and regulation of this responsiveness of the receptor system has been implicated in the central regulation of water intake and urinary excretion. The lateral septal area (LSA) exhibits a high density of 5-HT1A receptors, as well as a subpopulation of oxytocin (OT) receptors. Here we report the effects of pMPPF (a selective 5-HT1A antagonist), d(CH2)(5)[Tyr(Me)(2)Thr(4), Orn(5), Tyr(NH2)(9)]-vasotocin (an OT antagonist), and that 5-HT1A receptor system is regulated as a consequence of activation of the Na+ channel by veratridine. Cannulae were implanted into the LSA of rats to enable the introduction of the drugs. Injections of 8-OH-DPAT (a 5-HT1A agonist) blocked water intake and increased urinary excretion, while pMPPF or the OT antagonist injected bilaterally before 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. In contrast, increases in extracellular sodium levels induced by the sodium channel modulator, veratridine, enhanced 5-HT1A responsiveness for water intake and reduced the diuretic effects induced by 8-OH-DPAT. These trials demonstrated that the responsiveness of the 5-HT1A receptor system in the LSA can be enhanced or depressed as a consequence of an induced rise in extracellular sodium. (C) 2010 Elsevier B.V. All rights reserved.