949 resultados para Equações diferenciais não-lineares - Solução analítica aproximada
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cancer biology is a complex and expanding field of science study. Due its complexity, there is a strong motivation to integrate many fields of knowledge to study cancer biology, and biological stoichiometry can make this. Biological stoichiometry is the study of the balance of multiple chemical elements in biological systems. A key idea in biological stoichiometry is the growth rate hypothesis, which states that variation in the carbon:nitrogen:phosphorus stoichiometry of living things is associated with growth rate because of the elevated demands for phosphorusrich ribosomal RNA and other elements necessary to protein synthesis. As tumor cells has high rate proliferation, the growth rate hypothesis can be used in cancer study. In this work the dynamic of two tumors (primary and secondary) and the chemical elements carbon and nitrogen are simulate and analyzed through mathematical models that utilize as central idea biological stoichiometry. Differential equations from mathematical model are solved by numerical method Runge-Kutta fourth order
Resumo:
The term model refers to any representation of a real system. The use of models in Hydrogeology can be valuable predictive tools for management of groundwater resources. The numeric models of groundwater flow, object of this study, consist on a set of differential equations that describe the water flow in the porous medium. In this context, numeric simulations were made for a sub-basin located at Cara Preta farm – Santa Rita do Passa Quatro – SP. The aquifer at the local is composed by rocks of Pirambóia Formation, which is part of Guarani Aquifer System. It was developed a conceptual model from previous studies in the area, and from that, simulations were made through the software Visual Modflow®. The conceptual model established previously was considered consistent through the results of simulation.
Resumo:
This work presents a theoretical study of ordinary differential equations of first order directed so as to provide basis for the development of an educational software that helps students and researchers confronted with this issue. The algorithm was developed in HTML language in to that the results provide a website that allows the audience to access the software anywhere which has internet connection
Resumo:
The aim of this work is to analyze the stability of the rotational motion’s artificial satellite using the Routh Hurwitz Algorithm (CRH) and the quaternions to describe the satellite’s attitude. This algorithm allows the investigation of the stability of the motion using the coefficients of the characteristic equation associated with the equation of the rotational motion in the linear form. The equations of the rotational motion are given by the four cinematic equations for the quaternion and the three equations of Euler for the spin velocity’s components. In the Euler equations are included the components of the gravity gradient torque (TGG) and the solar radiation torque (TRS). The TGG is generated by the difference of the Earth gravity force direction and intensity actuating on each satellite mass element and it depends on the mass distribution and the form of the satellite. The TRS is created by changing of the linear momentum, which happens due to the interactions of solar photons with the satellite surface. The equilibrium points are gotten by the equation of rotational motion and the CRH is applied in the linear form of these equations. Simulations are developed for small and medium satellites, but the gotten equilibrium points are not stable by CRH. However, when some of the eigenvalues of the characteristic equation are analyzed, it is found some equilibrium points which can be pointed out as stables for an interval of the time, due to small magnitude of the real part of these eigenvalue
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)