946 resultados para Equações diferenciais estocásticas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, examinamos em detalhe resultados recentes apresentados em [Zingano, 1999], [Zingano, 2004], [Zingano, 1996a] [T. Hagstrom, 2004] sobre o comportamento de soluções para equações (escalares) de ad vecção-difusão nãolineares, da forma Ut + div(f(u)) = div(A(u)V'u), x E ]Rn, t > O correspondentes a estados iniciais u(., O) E LI(]Rn) n DXJ(JRn).Aqui, A(u) E ]Rn é uniformemente positiva definida para todos os valores de u em questão, e f( u) = (f1(u),..., fn(u)) corresponde ao fluxo advectivo, com A, f suaves. Entre os vários resultados, tem-se em particular os limites assintóticos . !!. (I_l) Iml (47rÀ)~ 11mt2 p Ilu(" t)IILP(JRn) = (4 À)!!. - , t-++oo 7r 2 P para cada 1 :::;P :::;00, uniformemente em p, bem como lim t~(l-i) Ilu(" t) - u(',t)IILP(JRn) = O, t-++oo 1:::; p:::; 00 para duas soluçõesu(', t), u(', t) quaisquer correspondentesa estados iniciais u(', O),u(', O)E LI (]Rn) n Loo(]Rn) com a mesma massa, isto é, r u(x, O)dx = r u(x,O)dx JJRn JJRn Outra propriedade fundamental, válida em dimensão n ;:::2, é lim t%(l-~) Ilu(" t) - v(', t) IILP(JRn) = O t-++oo para cada 1 :::;p :::; 00, se v(', t) é solução da equação de advecção-difusão linear Vt + f (O) . V'v= div(A(O)V'v), x E ]Rn, t > O, com u(', O),v(', O) E U(]Rn) n Loo(JRn) tendo a mesma massa. Outros resultados de interesse são também discutidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho desenvolvemos uma metodologia numérica para a solução do escoamento em torno de um vórtice. Como a análise completa deste tipo de fluxo não é uma tarefa fácil, simplificações quanto ao escoamento e ao método numérico são necessárias. Também investigamos o comportamento das soluções das equações governantes (Navier-Stokes) quando o tempo tende ao infinito. Nesse sentido, dividimos este trabalho em duas partes: uma numérica e outra analítica. Com o intuito de resolver numericamente o problema, adotamos o método de diferenças finitas baseado na formulação incompressível das equações governantes. O método numérico para integrar essas equações é baseado no esquema de Runge- Kutta com três estágios. Os resultados numéricos são obtidos para cinco planos bidimensionais de um vórtice com números de Reynolds variando entre 1000 e 10000. Na parte analítica estudamos taxas de decaimento das soluções das equações de Navier-Stokes quando os dados iniciais são conhecidos. Também estimamos as taxas de decaimento para algumas derivadas das soluções na norma L2 e comparamos com as taxas correspondentes da solução da equação do calor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, são obtidas diversas propriedades (em especial, referentes ao comportamento ao t -+ +00) das soluções u(', t) da equação linear do calor, Ut = div(AV'u), x E JRn, t > O onde A E JRnxné uma matriz constante simétrica e positiva definida, correspondentes a estados iniciais p-somáveis, i.e., u(x, O) = uo(x), Uo E LP(JRn), onde 1 :::;p < 00. Em particular, é examinado o comportamento de Ilu(., t)IILP(lRn) ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dXI quando p = 1, e Ilu(-' t)IILP(lRn)-+ O quando p > 1. São analisadas, também, as taxas de decaimento e o comportamento assintótico das soluções u(', t) de equações de advecção-difusão da forma Ut + divf(u) = div(A(u)V'u), x E JRn, t > O correspondentes a estados iniciais p-somáveis e limitados, i.e., u(x, O)= uo(x), u(', O) E LP(JRn) n LOO(JRn), onde 1 :::;p :::; 2. Novamente, é examinado o comportamento de Ilu(" t)IILP(lRn)ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dxl quando p = 1, e Ilu(" t)IILP(lRn)-+ O quando p > 1. Várias outras propriedades importantes são também discutidas, seguindo principalmente [Silva, 2003], [Crandall e Tartar, 1980], [Hagstrom et al., 2003], [Zingano, 1999], [Zingano, 2004a], [Zingano, 2004b].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é estudada a convexidade dos conjuntos de nível das soluções de dois problemas envolvendo equações elípticas. O primeiro desses problemas se refere a uma equação da forma 4u = °(u) em um anel convexo, com condições de fronteira u = 0 na fronteira externa e u = 1 na fronteira interna. Para provar a existência de solução do problema utiliza-se o método variacional. O problema de mostrar a convexidade dos conjuntos de nível é transformado em um problema de maximizar uma certa função. O segundo problema considerado é o de mostrar que é log-côncava a primeira autofunção do laplaciano, que tenha como peso uma função côncava.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A avaliação acurada da função renal através da medida da taxa de filtração glomerular (TFG) é fundamental na rotina clínica, pois é parte decisiva do diagnóstico e terapêutica. A recomendação atual da National Kidney Foundation (NKF) é o uso de equações que incluam a creatinina, idade, gênero e raça. No entanto a acurácia dessas equações tem sido questionada. Desta forma, investigadores ainda buscam um marcador ideal para analisar a função renal. Neste contexto, se encaixam os estudos com a cistatina C, uma substância endógena, que tem sido relatada como um indicador confiável e de fácil execução para esse propósito. A presente dissertação considerou a dosagem de cistatina C e a utilização da equação do MDRD para a avaliação da função renal em indivíduos saudáveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O artigo investiga os diferenciais de remuneração entre os professores dos diversos níveis de ensino, das redes pública e privada. Analisando somente os salários, os diferenciais são na maior parte dos casos favoráveis ao setor privado. Esta conclusão se altera quando se calcula o Valor Presente do Contrato de Trabalho. O VPCT leva em consideração toda a renda auferida pelo docente, incluindo os salários recebidos durante a vida ativa e também a aposentadoria. O VPCT do ensino público é sempre mais elevado que o VPCT privado. Também são calculadas as Taxas Internas de Retorno (TIRs) da previdência social, cujos resultados mostram que os retornos do setor público são maiores que os do setor privado. Conclui-se que as diferentes regras de aposentadoria têm importância significativa nos rendimentos ao longo da vida dos docentes. Também se conclui que docentes da rede pública não recebem remuneração inferior a seus pares do setor privado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trata-se da revisão de tópicos de matemática elementar do ensino fundamental com visão do ensino superior. Na subunidade 3 são abordados conceitos de cálculo algébrico, conjunto universo e conjunto solução de uma equação, equações do primeiro grau e inequações do primeiro grau com resolução de problemas. A subunidade 4 engloba a definição dos conceitos de monômios ou termos algébricos e polinômios e suas propriedades. Como complemento a teoria abordada apresenta exemplos de cálculo do mmc de polinômios e de equações fracionárias de primeiro grau com uma incógnita.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresenta a revisão de tópicos de matemática elementar do ensino fundamental com visão do ensino superior. Na subunidade 5 são abordados os seguintes tópicos: resolução de Equações do Segundo Grau com exemplo de cálculo, estudo das Raízes da Equação de Segundo Grau, resolução de Equações Biquadradas com exemplo de cálculo e Equações Irracionais com exemplo de cálculo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresenta as equações fundamentais da termodinâmica, considerando escoamento unidirecional, onde se conhecem as propriedades cinéticas e dinâmicas do fluido. Apresenta a lei da conservação de massa, expressa pela equação da continuidade e a equação de conservação de energia. Demonstra a aplicação das equações de balanço de massa e energia para bocais, processos de estrangulamento, turbinas, compressores e ejetores. Apresenta equações de eficiência para turbinas e compressores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jorge Nuno Silva

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação é fruto de um processo de reflexão sobre a minha experiência pro fissional de nove anos de serviço, como docente de matemática, bem como do interesse pela análise do processo de aprendizagem que os alunos do sétimo ano de escolaridade fazem das noções elementares da álgebra. Para realizar esta investigação, foi selecionada uma turma de sétimo ano, em que a maioria dos alunos é interessada pelo seu percurso escolar, embora, por vezes, não sejam constantes na sua prestação em sala de aula, bem como na realização do estudo correto em casa. Neste estudo, optou-se por uma metodologia de natureza qualitativa, de caráter interpretativo. O estudo das noções elementares da álgebra no sétimo ano de escolaridade é um marco de suma importância no percurso escolar dos alunos. É no sétimo ano de escolaridade que estes têm o primeiro contacto com noções elementares da álgebra. Por isso as experiências iniciais tornam-se fulcrais para uma aprendizagem significativa da álgebra. Assim, neste estudo, pretende-se estudar o impacte das várias tarefas aplicadas em sala de aula, quer individualmente, quer aos pares, ou em turma, a fim de se perceber o que, efetivamente, o aluno aprendeu das noções elementares da álgebra, mais concretamen te das equações. Com estas tarefas foi possível identificar algumas das dificuldades sentidas pelos alunos, neste ramo da matemática.