970 resultados para Epithelial Cells -- immunology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epithelial malignancies are common in immunosuppressed individuals and the general population. However the mechanisms by which the adaptive immune system can eliminate immunogenic epithelial cells remain undefined. The aim of this project was to determine the effector molecules required for induction of apoptosis in murine epidermal keratinocytes (MEKs) in vitro and in vivo. HPV16E7-specific CTL lines and T cell receptor transgenic (E7TCRtg) effector cells were obtained from wild type (wt)-C57 and syngeneic mice rendered functionally inactive for perforin (Pfp), interferon-g (IFN-g) or FasL. CTLs or E7TCRtg spleen cells were co-cultured with primary MEKs in vitro or transferred into skin graft recipients. Inhibition of colony formation and skin graft rejection were used as indicators of T cell:KC interaction. Wt E7-specific CTLs and CTLs deficient in perforin, FasL or IFN-g produced mean reductions in colony formation of 67% (62.4–71.3%), 72% (71.1–72%), 76% (73–78%) and 21.5% (14– 34%) respectively. Wt, perforin deficient or FasL deficient CTLs all induced rejection of skin grafts (wt: 6/12; Pfp: 9/15; FasL: 3/13 survival). Transfer and immunisation of wt E7TCRtg spleen cells induces rejection of 50% of grafts (4/8 survival). In contrast, perforin or IFN-g deficient E7TCRtg failed to induce graft rejection (5/6; 4/4 survival). FasL deficient E7TCRtg induced nonspecific rejection of grafts (E7- 2/6 survival; C57- 4/7 survival). Therefore IFN-g production by CTL is necessary and sufficient in vitro and in vivo to kill epithelial cells which express a nonself antigen. Assessment of immunotherapies directed against epithelial tissues may be more effectively achieved by assaying the amount of IFN-g production by CD8 T cells, and the number and affinity of those cells, in conjunction with quantitation of perforin mediated effects in short term assays.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis is a distinctive, usually fatal, type of chronic fibrosing interstitial pneumonia of unknown cause that increases in prevalence with advanced age, characterized by failure of alveolar re-epithelization and progressive scar formation. Recently, limitation of the replicative capacity of tissues determined by telomerase/apoptosis balance has been implicated in pathogenesis of age-related diseases. In this study, we validated the importance of the expression of type 2 alveolar epithelial cells telomerase protein and studied the relationships between telomerase and apoptosis in early remodeling of usual interstitial pneumonia. We determined type 2 alveolar epithelial cells density, telomerase expression, and apoptosis in surgical lung biopsies from 24 patients with usual interstitial pneumonia, and in normal lung tissues from 18 subjects. We used immunohistochemistry, deoxynucleotidyl transferase method of end labeling, electron microscopy, and histomorphometry to evaluate the amount of type 2 alveolar epithelial cells staining for surfactant-A, telomerase, and in situ detection of apoptotic cells. Unaffected areas of usual interstitial pneumonia and normal lung tissue had similar densities of type 2 alveolar epithelial cells, but a significant minor subpopulation of type 2 alveolar epithelial cells was telomerase positive and a large population was telomerase negative. A significant inverse association was found between low type 2, alveolar. epithelial cell telomerase expression and high apoptosis in unaffected areas of usual interstitial pneumonia. Although type 2 alveolar epithelial cell telomerase expression was higher than apoptosis in NLT group, no significant association was found between them. Electron microscopy confirmed epithelial apoptosis, alveolar collapse, and initial fibroplasia. We conclude that abnormal type 2 alveolar epithelial cells telomerase/apoptosis balance may reduce alveolar epithelial regenerative capacity, thus contributing to the early remodeling response in usual interstitial pneumonia. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prostate growth and physiology are regulated by steroid hormones and modulated by multiple endocrine factors We investigated the action of insulin on the tissue organization and kinetics of epithelial cells in the rat ventral prostate (VP) in response to castration up to 120 hours after surgery by using an acute protocol of alloxan induced diabetes Diabetes caused a reduction in volume density (Vv(o)/) and volume of the epithelium The effects of castration on the epithelium were accelerated in the diabetic animals as determined by changes in V(o)/, and volume The smooth muscle cells became atrophic and apparently relaxed in response to castration in contrast to the spinous aspect observed in nondiabetic castrated rats Counting of apoptotic nuclei in the epithelium showed the classical apoptosis peak at 72 hours in nondiabetic rats and an advance of the apoptosis peak to 48 hours after castration in diabetic rats Insulin restored the time of the peak to 72 hours These results were confirmed after immunostaining for cleaved caspase 3 and suggest a survival and antiapoptotic effect on VP epithelial cells in both the presence and absence of androgen stimulation This idea is supported by the observation that insulin also reduced the overall rate of apoptosis at all experimental points analyzed before and after castration

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. K(V)LQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential Defects in ion channels have been demonstrated in cardiac arrhythmia. This channel is inhibited potently by the chromanol 293B, The same compound has been shown to block cAMP-dependent electrolyte secretion in rat and human colon, Therefore, it was suggested that a K+ channel similar to K(V)LQT1 is expressed in the colonic epithelium. 2, In the present paper, expression of K(V)LQT1 and its function in colonic epithelial cells is described. Reverse transcription-polymerase chain reaction analysis of rat colonic mucosa demonstrated expression of K(V)LQT1 in both crypt cells and surface epithelium. When expressed in Xenopus oocytes, K(V)LQT1 induced a typical delayed activated K+ current. 3, As demonstrated, the channel activity could be further activated by increases in intracellular cAMP. These and other data support the concept that K(V)LQT1 is forming a component of the basolateral cAMP-activated Kf conductance in the colonic epithelium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The class of molecular chaperones known as 14-3-3 is involved in the control of cellular growth by virtue of its apparent regulation of various signaling pathways, including the Raf/mitogen-activated protein kinase pathway. In breast cancer cells, the sigma form of 14-3-3 has been shown to interact with cyclin-dependent kinases and to control the rate of entry into mitosis. To test for a direct role for 14-3-3 in breast epithelial cell neoplasia, me have quantitated 14-3-3 protein levels using a proteomic approach based on two-dimensional electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF). We show here that 14-3-3 sigma protein is strongly down-regulated in the prototypic breast cancer cell lines MCF-7 and MDA-MB-231 and in primary breast carcinomas as compared with normal breast epithelial cells. In contrast, levels of the alpha, beta, delta, or zeta isoforms of 14-3-3 mere the same in both normal and transformed cells. The data support the idea that 14-3-3 sigma is involved in the neoplastic transition of breast epithelial cells by virtue of its role as a tumor suppressor; as such, it may constitute a robust marker with clinical efficacy for this pathology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we examined the contribution of microtubules to epithelial morphogenesis in primary thyroid cell cultures. Thyroid follicles consist of a single layer of polarized epithelial cells surrounding a closed compartment, the follicular lumen. Freshly isolated porcine thyroid cells aggregate and reorganize to form follicles when grown in primary cultures. Follicular reorganization is principally a morphogenetic process that entails the assembly of biochemically distinct apical and basolateral membrane domains, delimited by tight junctions. The establishment of cell surface polarity during folliculogenesis coincided with the polarized redistribution of microtubules, predominantly in the developing apical poles of cells. Disruption of microtubule integrity using either colchicine or nocodazole caused loss of defined apical membrane domains, tight junctions and follicular lumina. Apical membrane and tight junction markers became randomly distributed at the outer surfaces of aggregates. In contrast, the basolateral surface markers, E-cadherin and Na+,K+-ATPase, remained correctly localized at sites of cell-cell contact and at the free surfaces of cell aggregates. These findings demonstrate that microtubules play a necessary role in thyroid epithelial morphogenesis. Specifically, microtubules are essential to preserve the correct localization of apical membrane components within enclosed cellular aggregates, a situation that is also likely to pertain where lumina must be formed from solid aggregates of epithelial precursors. (C) 2001 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Eph family (of receptor tyrosine kinases plays a crucial role during development and is implicated in oncogenesis. Using a partial cDNA clone of an Eph-related kinase (Esk) we isolated the complete coding region of a gene which we show to be murine EphA1 by both structural and functional criteria. The chromosomal localization is shown to be syntenic to hEphA1 and the genomic organization also shows distinct features found in the hEphA1 gene. Functionally, in keeping with findings for the human homologue, both soluble recombinant and native mEphA1 show preferential binding to ephrin A1. However, we also observed significant binding to other A-type ligands as has been observed for other Eph receptors. We analysed the expression of mEphA1 mRNA by in situ hybridization on tissue sections. mEphA1 was expressed in epithelial elements of skin, adult thymus, kidney and adrenal cortex. Taken together with previous Northern blotting data these results suggest that mEphA1 is expressed widely in differentiated epithelial cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose. To demonstrate that the combination of impression cytology and single cell DNA fingerprinting represents a powerful tool that is suitable for detecting transplanted cells after corneal limbal allografting. Methods, Fifty single cells were obtained by corneal impression cytology from 12 patients undergoing cataract surgery. Individual cells were isolated from samples by micromanipulation. Polymerase chain reaction and short tandem repeat profiling was used to obtain forensic standard DNA fingerprints from single cells. Blood samples taken at the time of impression cytology provided control fingerprints. Results, informative DNA fingerprints were obtained from all corneal samples and 66% (33 of 50 cells) of isolated single cells, Of all fingerprints obtained, most (91%, 30 of 33 fingerprints) corneal fingerprints matched corresponding blond sample fingerprints. At least one corneal fingerprint matched the corresponding blood sample fingerprint in 83% (10 of 12 patients) of the patients in the study, Conclusions. This extremely specific single cell DNA fingerprinting system permits accurate identification of individual corneal epithelial cells, allowing very reliable determination of their origin, which will enable host and donor cells to be distinguished from each other after keratolimbal allografting procedures. even if the host and donor are the same sex or siblings. These DNA fingerprinting methods allow assessment of quality and quantity of donor cell survival, as well as survival time. The extreme sensitivity and accuracy of the technique means that should contamination occur, it would be identified, thus ensuring meaningful results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor beta (PPARbeta) is a member of the nuclear hormone receptor superfamily and is a ligand activated transcription factor. although the precise genes that it regulates and its physiological and pathophysiological role remain unclear. In view of the association of PPARbeta with colon cancer and increased mRNA levels of PPARbeta in colon tumours we sought in this study to examine the expression of PPARbeta in human breast epithelial cells of tumorigenic (MCF-7 and MDA-MB-231) and non-tumorigenic origin (MCF-10A). Using quantitative RT-PCR we measured PPARbeta mRNA levels in MCF-7. MDA-MB-231 and MCF-10A cells at various stages in culture. After serum-deprivation, MDA-MB-231 and MCF-10A cells had a 4.2- and 3.8-fold statistically greater expression of PPARbeta compared with MCF-7 cells. The tumorigenic cell lines also exhibited a significantly greater level of PPARbeta mRNA after serum deprivation compared with subconfluence whereas such an effect was not observed in non-tumorigenic MCF-10A cells. The expression of PPARbeta was inducible upon exposure to the PPARbeta ligand bezafibrate. Our results suggest that unlike colon cancer. PPARbeta overexpression is not an inherent property of breast cancer cell lines. However, the dynamic changes in PPARbeta mRNA expression and the ability of PPARbeta in the MCF-7 cells to respond to ligand indicates that PPARbeta may play a role in mammary gland carcinogenesis through activation of downstream genes via endogenous fatty acid ligands or exogenous agonists. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show here that nerve growth factor (NGF), the canonical neurotrophic factor, is synthesized and released by breast cancer cells. High levels of NGF transcript and protein were detected in breast cancer cells by reverse transcription-PCR, Western blotting, ELISA assay and immunohistochemistry. Conversely, NGF production could not be detected in normal breast epithelial cells at either the transcriptional or protein level. Confocal analysis indicated the presence of NGF within classical secretion vesicles. Breast cancer cell-produced NGF was biologically active, as demonstrated by its ability to induce the neuronal differentiation of embryonic neural precursor cells. Importantly, the constitutive growth of breast cancer cells was strongly inhibited by either NGF-neutralizing antibodies or K-252a, a pharmacological inhibitor of NGF receptor TrkA, indicating the existence of an NGF autocrine loop. Together, our data demonstrate the physiological relevance of NGF in breast cancer and its potential interest as a marker and therapeutic target.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Priming to Ag can inhibit subsequent induction of an immune response to a new epitope incorporated into that Ag, a phenomenon referred to as original antigenic sin. In this study, we show that prior immunity to a virus capsid can inhibit subsequent induction of the IFN-gamma effector T cell response to a novel CD8-restricted antigenic epitope associated with the virus capsid. Inhibition does not involve Ab to the virus capsid, as it is observed in animals lacking B cells. CD8-restricted virus-specific T cell responses are not required, as printing to virus without CTL induction is associated with inhibition. However, IL-10(-/-) mice, in contrast to IL-10(+/+) mice, generate CD8 T cell and Ab responses to novel epitopes incorporated into a virus capsid, even when priming to the capsid has resulted in high titer Ab to the capsid. Furthermore, capsid-primed mice, unable to mount a response to a novel epitope in the capsid protein, are nevertheless able to respond to the same novel epitope delivered independently of the capsid. Thus, inhibition of responsiveness to a novel epitope in a virus-primed animal is a consequence of secretion of IL-10 in response to presented Ag, which inhibits local generation of new CD8 IFN-gamma-secreting effector T cells. Induction of virus- or tumor Ag-specific CD8 effector T cells in the partially Ag-primed host may thus be facilitated by local neutralization of IL-10.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pili of pathogenic Neisseria are major virulence factors associated with adhesion, cytotoxicity, twitching motility, autoaggregation, and DNA transformation. Pili are modified posttranslationally by the addition of phosphorylcholine. However, no genes involved in either the biosynthesis or the transfer of phosphorylcholine in Neisseria meningitidis have been identified. In this study, we identified five candidate open reading frames (ORFs) potentially involved in the biosynthesis or transfer of phosphorylcholine to pilin in N. meningitidis. Insertional mutants were constructed for each ORF in N. meningitidis strain C311#3 to determine their effect on phosphorylcholine expression. The effect of the mutant ORFs on the modification by phosphorylcholine was analyzed by Western analysis with phosphorylcholine-specific monoclonal antibody TEPC-15. Analysis of the mutants showed that ORF NMB0415, now defined as pptA (pilin phosphorylcholine transferase A), is involved in the addition of phosphorylcholine to pilin in N. meningitidis. Additionally, the phase variation (high frequency on-off switching of expression) of phosphorylcholine on pilin is due to changes in a homopolymeric guanosine tract in pptA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Micronuclei (MN) in exfoliated epithelial cells are widely used as biomarkers of cancer risk in humans. MN are classified as biomarkers of the break age and loss of chromosomes. They are small, extra nuclear bodies that arise in dividing cells from centric chromosome/chromatid fragments or whole chromosomes/chromatids that lag behind in anaphase and are not included in the daughter nuclei in telophase. Buccal mucosa cells have been used in biomonitoring exposed populations because these cells are in the direct route of exposure to ingested pollutant, are capable of metabolizing proximate carcinogens to reactive chemicals, and are easily and rapidly collected by brushing the buccal mucosa. The objective of the present study was to further investigate if, and to what extent, different stains have an effect on the results of micronuclei studies in exfoliated cells. These techniques are: Papanicolaou (PAP), Modified Papanicolaou, May-Grünwald Giemsa (MGG), Giemsa, Harris’s Hematoxylin, Feulgen with Fast Green counterstain and Feulgen without counterstain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn+ bladder cancer cells, had an immature phenotype (MHC-IIlow, CD80low and CD86low) and were unresponsive to further maturation stimuli. When contacting with STn+ cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn+ cancer cells were not activated and showed a FoxP3high IFN-γlow phenotype. Blockade of STn antigens and of STn+ glycoprotein, CD44 and MUC1, in STn+ cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn+ glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.