970 resultados para Engineer
Resumo:
Engineering design processes are necessary to attain the requisite standards of integrity for high-assurance safety-related systems. Additionally, human factors design initiatives can provide critical insights that parameterise their development. Unfortunately, the popular perception of human factors as a “forced marriage” between engineering and psychology often provokes views where the ‘human factor’ is perceived as a threat to systems design. Some popular performance-based standards for developing safety-related systems advocate identifying and managing human factors throughout the system lifecycle. However, they also have a tendency to fall short in their guidance on the application of human factors methods and tools, let alone how the outputs generated can be integrated in to various stages of the design process. This case study describes a project that converged engineering with human factors to develop a safety argument for new low-cost railway level crossing technology for system-wide implementation in Australia. The paper enjoins the perspectives of a software engineer and cognitive psychologist and their involvement in the project over two years of collaborative work to develop a safety argument for low-cost level crossing technology. Safety and reliability requirements were informed by applying human factors analytical tools that supported the evaluation and quantification of human reliability where users interfaced with the technology. The project team was confronted with significant challenges in cross-disciplinary engagement, particularly with the complexities of dealing with incongruences in disciplinary language. They were also encouraged to think ‘outside the box’ as to how users of a system interpreted system states and ehaviour. Importantly, some of these states, while considered safe within the boundary of the constituent systems that implemented safety-related functions, could actually lead the users to engage in deviant behaviour. Psychology explained how user compliance could be eroded to levels that effectively undermined levels of risk reduction afforded by systems. Linking the engineering and psychology disciplines intuitively, overall safety performance was improved by introducing technical requirements and making design decisions that minimized the system states and behaviours that led to user deviancy. As a commentary on the utility of transdisciplinary collaboration for technical specification, the processes used to bridge the two disciplines are conceptualised in a graphical model.
Resumo:
Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.
Resumo:
This paper addresses of the advanced computational technique of steel structures for both simulation capacities simultaneously; specifically, they are the higher-order element formulation with element load effect (geometric nonlinearities) as well as the refined plastic hinge method (material nonlinearities). This advanced computational technique can capture the real behaviour of a whole second-order inelastic structure, which in turn ensures the structural safety and adequacy of the structure. Therefore, the emphasis of this paper is to advocate that the advanced computational technique can replace the traditional empirical design approach. In the meantime, the practitioner should be educated how to make use of the advanced computational technique on the second-order inelastic design of a structure, as this approach is the future structural engineering design. It means the future engineer should understand the computational technique clearly; realize the behaviour of a structure with respect to the numerical analysis thoroughly; justify the numerical result correctly; especially the fool-proof ultimate finite element is yet to come, of which is competent in modelling behaviour, user-friendly in numerical modelling and versatile for all structural forms and various materials. Hence the high-quality engineer is required, who can confidently manipulate the advanced computational technique for the design of a complex structure but not vice versa.
Resumo:
Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.
Resumo:
Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.
Resumo:
BACKGROUND In a process engineering setting, graduates are frequently allocated reviews of existing operations or required to scope new production processes by their supervisors with a view to improving or expanding on operations and overall productivity. These tasks may be carried out in teams and in consultation with the process engineer’s immediate line manager or a more experienced engineer, such as the Production or Maintenance Manager; ultimately reporting to senior management, which is frequently a non-engineer. Although professional skills development is part of engineering curricula, ‘professional conduct’ and ‘accountability’ required for dealing with peers and superiors in industry is not very well addressed at university. Consequently, upon graduation, many students are, in terms of knowledge and experience in this area, underprepared to work effectively in industry settings. PURPOSE The purpose of this study was to develop and implement a role-play scenario within a core 2nd year process engineering unit, so that students could gain knowledge, skills and experience in different aspects (and nuances) of professional conduct and accountability. DESIGN/METHOD In the role-play scenario, students worked in ‘engineering production teams’ to design a process for an iconic Queensland fruitcake and to present their solution and recommendations (culminating in a poster presentation) to an assessment panel consisting of staff, role-playing as, ‘production and plant managers’. Students were assessed on several areas, including professionalism using a criteria referenced assessment guide by a 3-member cross-disciplinary staff panel consisting of a Business Faculty lecturer, an engineer from industry and the lecturer of the Process Engineering unit. Professional conduct and accountability was gauged through direct questioning by the panel. Feedback was also sought from students on various aspects through a survey questionnaire after the role play activity at the end of semester. RESULTS Overall, the role play was very well performed with students achieving an average score of 79.3/100 (distinction grade). Professional conduct as assessed by panel was on average better than scores given for professional accountability (4.0 compared with 3.6 out of 5). Feedback from students indicated that the learning activities had contributed to their overall understanding of the content and the role of process engineers. Industry involvement was rated very highly as contributing to their learning at 4.8 (on Likert scale from 1 – 5) and the poster presentation was rated at 3.6. CONCLUSIONS This pilot study was successful in implementing a new assessment task for modelling professional conduct and accountability within a 2nd year core unit. This task incorporated a role-play activity and there was evidence to suggest that this and associated learning tasks were successful in broadening students’ understanding and skills in this area required for engineering practice. Following feedback given by students and staff, improvements will be made to the nature of the problem, how it is defined, its assessment, and the approach taken in the role-play scenario when the unit is offered in 2014.
Resumo:
Monash University in Australia has developed a new approach towards DNA vaccine development that has the potential to cut the time it takes to produce a vaccine from up to nine months to four weeks or less. The university has designed and filed a patent on a commercially viable, single-stage technology for manufacturing DNA molecules. The technology was used to produce malaria and measles DNA vaccines, which were tested to be homogeneous supercoiled DNA, free from RNA and protein contaminations and meeting FDA regulatory standards for DNA vaccines. The technique is based on customized, smart, polymeric, monolithic adsorbents that can purify DNA very rapidly. The design criteria of solid-phase adsorbent include rapid adsorption and desorption kinetics, physical composition, and adequate selectivity , capacity and recovery. The new show technology significantly improved binding capacities, higher recovery, drastically reduced use of buffers and processing time, less clogging, and higher yields of DNA.
Resumo:
Conducting polymers have become the focus of research due to their interesting properties, such as a wide range of conductivity, facile production, mechanical stability, light weight and low cost and due to the ease with which conducting polymers can be nanostructured to meet the specific application. They have become valuable materials for many applications, such as energy storage and generation. Recently, conducting polymers have been studied to be used in supercapacitors, battery electrode and fuel cells. This article is to briefly discuss the background & theory behind their conductivity as well as to highlight the recent contributions of conducting polymers to the field of energy and their significance. Furthermore, the methods of production of the conducting polymers in addition to the different ways utilised to nano-engineer special morphologies are discussed.
Resumo:
Organizational and technological systems analysis and design practices such as process modeling have received much attention in recent years. However, while knowledge about related artifacts such as models, tools, or grammars has substantially matured, little is known about the actual tasks and interaction activities that are conducted as part of analysis and design acts. In particular, key role of the facilitator has not been researched extensively to date. In this paper, we propose a new conceptual framework that can be used to examine facilitation behaviors in process modeling projects. The framework distinguishes four behavioral styles in facilitation (the driving engineer, the driving artist, the catalyzing engineer, and the catalyzing artist) that a facilitator can adopt. To distinguish between the four styles, we provide a set of ten behavioral anchors that underpin facilitation behaviors. We also report on a preliminary empirical exploration of our framework through interviews with experienced analysts in six modeling cases. Our research provides a conceptual foundation for an emerging theory for describing and explaining different behaviors associated with process modeling facilitation, provides first preliminary empirical results about facilitation in modeling projects, and provides a fertile basis for examining facilitation in other conceptual modeling activities.
Resumo:
BACKGROUND For engineering graduates to be work-ready with marketable skills they must not only be well-versed with engineering science and its applications, but also able to adapt to using commercial software that is widely used in engineering practice. Hydrological/hydraulic modelling is one aspect of engineering practice which demands the ability to apply fundamentals into design and construction using software. The user manuals for such software are usually tailored for the experienced engineer but not for undergraduates who typically are novices to concepts of modelling and software tools. As the focus of a course such as Advanced Water Engineering is on the wider aspects of engineering application of hydrological and hydraulic concepts, it is ineffective for the lecturers to direct the students to user manuals as students have neither the time nor the desire to sift through numerous pages in a manual. An alternative and efficient way to demonstrate the use of the software is enabling students to develop a model to simulate real-world scenario using the tools of the software and directing them to make informed decisions based on outcomes. PURPOSE Past experience of the lecturer showed that the resources available for the students left a knowledge gap leading to numerous student queries outside contact hours. The purpose of this study is to assess how effective purpose-built video resources can be in supplementing the traditional learning resources to enhance student learning. APPROACH Short-length animated video clips comprising guided step-by-step instructions were prepared using screen capture software to capture screen activity and later edited to focus on specific features using pop-up annotations; Vocal narration was purposely excluded to avoid disturbances due to noise and allow different learning paces of individual students. The video clips were made available to the students alongside the traditional resources/approaches such as in-class demonstrations, guideline notes, and tips for efficient and error-free procedural descriptions. The number of queries the lecturer received from the student cohort outside the lecture times was recorded. An anonymous survey to assess the usefulness and adequacy of the courseware was conducted. OUTCOMES While a significant decline in the number of student queries was noted, an overwhelming majority of the survey respondents confirmed the usefulness of the purpose-developed courseware. CONCLUSIONS/RECOMMENDATIONS/SUMMARY The survey and lecturer’s experience indicated that animated demonstration video clips illustrating the various steps involved in developing hydrologic and hydraulic models and simulating design scenarios is an effective supplement for traditional learning resources. Among the many advantages of the custom-made video clips as a learning resource are that they (1) highlight the aspects that are important to undergraduate learning but not available in the software manuals as the latter are designed for more mature users/learners; (2) provide short, to-the point communication in a step-by-step manner; (3) allow students flexibility to self-learn at their own pace; (4) enhance student learning; and (5) enable time savings for the lecturer in the long term by avoiding queries of a repetitive nature. It is expected that these newly developed resources will be improved to incorporate students’ suggestions before being offered to future cohorts of students. The concept can also be expanded to other relevant courses where animated demonstrations of key modelling steps are beneficial to student learning.
Resumo:
Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity.
Resumo:
Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches.
Resumo:
This project provides a steppingstone to comprehend the mechanisms that govern particulate fouling in metal foam heat exchangers. The method is based on development of an advanced Computational Fluid Dynamics model in addition to performing analytical validation. This novel method allows an engineer to better optimize heat exchanger designs, thereby mitigating fouling, reducing energy consumption caused by fouling, economize capital expenditure on heat exchanger maintenance, and reduce operation downtime. The robust model leads to the establishment of an alternative heat exchanger configuration that has lower pressure drop and particulate deposition propensity.
Resumo:
The active site of triosephosphate isomerase (TIM, EC: 5.3.1.1), a dimeric enzyme, lies very close to the subunit interface. Attempts to engineer monomeric enzymes have yielded well-folded proteins with dramatically reduced activity. The role of dimer interface residues in the stability and activity of the Plasmodium falciparum enzyme, PfTIM, has been probed by analysis of mutational effects at residue 74. The PfTIM triple mutant W11F/W168F/Y74W (Y74W*) has been shown to dissociate at low protein concentrations, and exhibits considerably reduced stability in the presence of denaturants, urea and guanidinium chloride. The Y74W* mutant exhibits concentration-dependent activity, with an approximately 22-fold enhancement of kcat over a concentration range of 2.5–40 μm, suggesting that dimerization is obligatory for enzyme activity. The Y74W* mutant shows an approximately 20-fold reduction in activity compared to the control enzyme (PfTIM WT*, W11F/W168F). Careful inspection of the available crystal structures of the enzyme, together with 412 unique protein sequences, revealed the importance of conserved residues in the vicinity of the active site that serve to position the functional K12 residue. The network of key interactions spans the interacting subunits. The Y74W* mutation can perturb orientations of the active site residues, due to steric clashes with proximal aromatic residues in PfTIM. The available crystal structures of the enzyme from Giardia lamblia, which contains a Trp residue at the structurally equivalent position, establishes the need for complementary mutations and maintenance of weak interactions in order to accommodate the bulky side chain and preserve active site integrity.
Resumo:
Memoir, written in 1997