999 resultados para Emission tuning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of branched ZnO nanostructures by vapour phase transport and their multistage effect in enhancing the field emission behaviour. First, the ZnO nanowires (first generation) are grown and second generation nanowires are grown on first one and so on to obtain the branched structures. The number of branches increases and the diameter of the branches decreases till the third generation nanowires. Fourth generation onwards, dense branched structures are obtained eventually yielding nanoforest-like morphology. The field emission behaviour is found to improve till the third generation and is assigned to smaller diameter of the branches. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, a detailed visualization of the transport of fuel film has been performed in a small carburetted engine with a transparent manifold at the exit of the carburettor. The presence of fuel film is observed significantly on the lower half of the manifold at idling, while at load conditions, the film is found to be distributed all throughout the manifold walls. Quantitative measurement of the fuel film in a specially-designed manifold of square cross section has also been performed using the planar laser-induced fluorescence (PLIF) technique. The measured fuel film thickness is observed to be of the order of 1 nun at idling, and in the range of 0.1 to 0.4 mm over the range of load and speed studied. These engine studies are complemented by experiments conducted in a carburettor rig to study the state of the fuel exiting the carburettor. Laser-based Particle/Droplet Image Analysis (PDIA) technique is used to identify fuel droplets and ligaments and estimate droplet diameters. At a throttle position corresponding to idling, the fuel exiting the carburettor is found to consist of very fine droplets of size less than 15 mu m and large fuel ligaments associated with length scales of the order of 500 mu m and higher. For a constant pressure difference across the carburettor, the fuel consists of droplets with an SMD of the order of 30 mu m. Also, the effect of liquid fuel film on the cold start HC emissions is studied. Based on the understanding obtained from these studies, strategies such as manifold heating and varying carburettor main jet nozzle diameter are implemented. These are observed to reduce emissions under both idling and varying load conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GdAlO3, GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ nanophosphors were synthesised by solution combustion technique. Pure orthorhombic phase was obtained from powder X-ray diffraction (PXRD) studies. Scanning electron microscopy (SEM) micrographs showed the porous, agglomerated and irregular shaped particles. The particle size obtained by transmission electron microscopy (TEM) measurement was in good agreement with the values obtained by Debye Scherrer's and W-H plots. The selected area electron diffraction (SAED) pattern show single crystalline nature of the sample. Photoluminescence (PL) measurements were carried out for GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ phosphors excited at a wavelength of 274 nm. The characteristic emission peaks of Eu3+ ions were recorded at 590, 614, 655 and 695 nm corresponding to D-5(0) -> F-7(J) (J = 1, 2, 3, 4) transitions respectively. However, with addition of Bi3+ ions in GdAlO3:Eu3+, PL intensity drastically enhanced. Orange red color was tuned to deep red color with the addition of Bi3+ ions in GdAlO3:Eu3+ phosphor. Therefore, the phosphor was highly useful as red component in WLEDs. A single well resoled glow peak at 225 degrees C was recorded in GdAlO3 and GdAlO3:Eu3+. Further, with addition of Bi3+ ions, an additional peak at 300 degrees C was recorded. TL glow curves of different UV-exposed GdAlO3:Eu3+:Bi3+ show two TL peaks at 207 and 300 degrees C respectively. The 207 degrees C peak show simple glow peak structure and its intensity increases linearly up to 25 mm and after that it decrease. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (AI) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (E-to similar to 0.1 V/mu m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on analysis of fracture processes in reinforced concrete (RC) beams with acoustic emission (AE) technique. An emphasis was given to study the effect of loading rate on variation in AE based b-values with the development of cracks in RC structures. RC beams of length 3.2 m were tested under load control at a rate of 4 kN/s, 5 kN/s and 6 kN/s and the b-value analysis available in seismology was used to study the fracture process in RC structures. Moreover, the b-value is related to the strain in steel to assess the damage state. It is observed that when the loading rate is higher, quick cracking development lead to rapid fluctuations and drops in the b-values. Also it is observed that concrete behaves relatively more brittle at higher loading rates (or at higher strain rates). The average b-values are lower as a few but larger amplitudes of AE events occur in contrast to more number of low amplitude AE events occur at low loading rates (or at low strain rates). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical-pump terahertz-probe differential transmission measurements of as-prepared single layer graphene (AG) (unintentionally hole dopedwith Fermi energy E-F at similar to -180 meV), nitrogen doping compensated graphene (NDG) with E-F similar to -10 meV, and thermally annealed doped graphene (TAG) are examined quantitatively to understand the opposite signs of photoinduced dynamic terahertz conductivity Delta sigma. It is negative for AG and TAG but positive for NDG. We show that the recently proposed mechanism of multiple generations of secondary hot carriers due to Coulomb interaction of photoexcited carriers with the existing carriers together with the intraband scattering can explain the change of photoinduced conductivity sign and its magnitude. We give a quantitative estimate of Delta sigma in terms of controlling parameters-the Fermi energy E-F and momentum relaxation time tau. Furthermore, the cooling of photoexcited carriers is analyzed using a supercollision model which involves a defect mediated collision of the hot carriers with the acoustic phonons, thus giving an estimate of the deformation potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum dot arrays have been projected as the material of choice for next generation displays and photodetectors. Extensive ongoing research aims at improving optical and electrical efficiencies of such devices. We report experimental results on non-local long range emission intensity enhancement and anisotropy in quantum dot assemblies induced by isolated and partially aligned gold nanoantennas. Spatially resolved photoluminescence clearly demonstrate that the effect is maximum, when the longitudinal surface plasmon resonance of the nanoantenna is resonant with the emission maxima of the quantum dots. We estimated the decay length of this enhancement to be similar to 2.6 mu m, which is considerably larger than the range of near field interaction of metal nanoantenna. Numerical simulations qualitatively capture the near field behavior of the nanorods but fail to match the experimentally observed non-local effects. We have suggested how strong interactions of quantum dots in the close packed assemblies, mediated by the nanoantennas, could lead to such observed behavior. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demixing in an LCST mixture of PS/PVME (polystyrene/poly(vinyl methyl ether)) was probed here by melt rheology in the presence of gold nanoparticles which were densely coated with varying graft lengths of PS. The graft density for the gold nanoparticles coated with 3 kDa PS was ca. Sigma = 1.7 chains/nm(2), and that for 53 kDa PS was ca. Sigma = 1.2 chains/nm(2). The evolution of morphology, as the blends transit through the metastable and the unstable envelopes of the phase diagram, and the localization of the gold nanoparticles upon demixing were monitored using in situ hot-stage AFM and confocal Raman imaging. Interestingly, gold nanoparticles coated with 3 kDa polystyrene (PS(3 kDa)-g-nAu) were localized in the PVME phase, whereas gold nanoparticles coated with 53 kDa polystyrene (PS(53 kDa)-g-nAu) were localized in the PS phase of the blend. While the localization of PS(3 kDa)-g-nAu in the PVME phase can be expected to be of entropic origin due to expulsion from the PS phase as R-g,R-matrix chains > R-g,R-grafted chains (where R-g is the radius of gyration of the polymer chain), the localization of PS(53 kDa)-g-nAu in the PS phase is believed to be facilitated by favorable melt/graft interactions. The latter nanoparticles also delayed the demixing by 12 degrees C with respect to the neat mixture. The observed changes were addressed in context to enthalpic interactions between the grafted PS and the free PS, the entropic losses (deformational entropic losses on blending, translational entropic loss of the free PS, and the conformational entropic loss of the grafted PS), and the interface of the grafted and the free chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high-strength aluminum alloys that can operate at 250 degrees C and beyond remains a challenge to the materials community. In this paper we report preliminary development of nanostructural Al-Cu-Ni ternary alloys containing alpha-Al, binary Al2Cu and ternary Al2Cu4Ni intermetallics. The alloys exhibits fracture strength of similar to 1 GPa with similar to 9% fracture strain at room temperature. At 300 degrees C, the alloy retains the high strength. The reasons for such significant mechanical properties are rationalized by unraveling the roles and response of various microstructural features. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical emission from emitters strongly interacting among themselves and also with other polarizable matter in close proximity has been approximated by emission from independent emitters. This is primarily due to our inability to evaluate the self-energy matrices and radiative properties of the collective eigenstates of emitters in heterogeneous ensembles. A method to evaluate self-energy matrices that is not limited by the geometry and material composition is presented to understand and exploit such collective excitations. Numerical evaluations using this method are used to highlight the significant differences between independent and the collective modes of emission in nanoscale heterostructures. A set of N Lorentz emitters and other polarizable entities is used to represent the coupled system of a generalized geometry in a volume integral approach. Closed form relations between the Green tensors of entity pairs in free space and their correspondents in a heterostructure are derived concisely. This is made possible for general geometries because the global matrices consisting of all free-space Green dyads are subject to conservation laws. The self-energy matrix can then be assembled using the evaluated Green tensors of the heterostructure, but a decomposition of its components into their radiative and nonradiative decay contributions is nontrivial. The relations to compute the observables of the eigenstates (such as quantum efficiency, power/energy of emission, radiative and nonradiative decay rates) are presented. A note on extension of this method to collective excitations, which also includes strong interactions with a surface in the near-field, is added. (C) 2014 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission loss (TL) of a simple expansion chamber (SEC) consists of periodic domes with sharp troughs. This limits practical application of the SEC in the variable-speed automobile exhaust systems. Three-fourths of the troughs of the SEC can be lifted by appropriate tuning of the extended inlet/outlet lengths. However, such mufflers suffer from high back pressure and generation of aerodynamic noise due to free shear layers at the area discontinuities. Therefore, a perforate bridge is made between the extended inlet and outlet. It is shown that the TL curve of a concentric tube resonator (CTR) can also be lifted in a similar way by proper tuning of the extended unperforated lengths. Differential lengths have to be used to correct the inlet/outlet lengths in order to account for the perforate inertance. The resonance peak frequencies calculated by means of the 1-D analysis are compared with those of the 3-D FEM, and appropriate differential lengths are calculated. It is shown how different geometric characteristics of the muffler and mean flow affect the differential lengths. A general correlation is obtained for the differential lengths by considering seven relevant geometric and environmental parameters in a comprehensive parametric study. The resulting expressions would help in design of extended-tube CTR for wide-band TL. (C) 2014 Institute of Noise Control Engineering.