978 resultados para Electron beam tomography


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Upper airway measurement can be important for the diagnosis of breathing disorders. Acoustic reflection (AR) is an accepted tool for studying the airway. Our objective was to investigate the differences between cone-beam computed tomography (CBCT) and AR in calculating airway volumes and areas. METHODS: Subjects with prescribed CBCT images as part of their records were also asked to have AR performed. A total of 59 subjects (mean age, 15 ± 3.8 years) had their upper airway (5 areas) measured from CBCT images, acoustic rhinometry, and acoustic pharyngometry. Volumes and minimal cross-sectional areas were extracted and compared with software. RESULTS: Intraclass correlation on 20 randomly selected subjects, remeasured 2 weeks apart, showed high reliability (r >0.77). Means of total nasal volume were significantly different between the 2 methods (P = 0.035), but anterior nasal volume and minimal cross-sectional area showed no differences (P = 0.532 and P = 0.066, respectively). Pharyngeal volume showed significant differences (P = 0.01) with high correlation (r = 0.755), whereas pharyngeal minimal cross-sectional area showed no differences (P = 0.109). The pharyngeal volume difference may not be considered clinically significant, since it is 758 mm3 for measurements showing means of 11,000 ± 4000 mm3. CONCLUSIONS: CBCT is an accurate method for measuring anterior nasal volume, nasal minimal cross-sectional area, pharyngeal volume, and pharyngeal minimal cross-sectional area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents an investigation on endoscopic optical coherence tomography (OCT). As a noninvasive imaging modality, OCT emerges as an increasingly important diagnostic tool for many clinical applications. Despite of many of its merits, such as high resolution and depth resolvability, a major limitation is the relatively shallow penetration depth in tissue (about 2∼3 mm). This is mainly due to tissue scattering and absorption. To overcome this limitation, people have been developing many different endoscopic OCT systems. By utilizing a minimally invasive endoscope, the OCT probing beam can be brought to the close vicinity of the tissue of interest and bypass the scattering of intervening tissues so that it can collect the reflected light signal from desired depth and provide a clear image representing the physiological structure of the region, which can not be disclosed by traditional OCT. In this thesis, three endoscope designs have been studied. While they rely on vastly different principles, they all converge to solve this long-standing problem.

A hand-held endoscope with manual scanning is first explored. When a user is holding a hand- held endoscope to examine samples, the movement of the device provides a natural scanning. We proposed and implemented an optical tracking system to estimate and record the trajectory of the device. By registering the OCT axial scan with the spatial information obtained from the tracking system, one can use this system to simply ‘paint’ a desired volume and get any arbitrary scanning pattern by manually waving the endoscope over the region of interest. The accuracy of the tracking system was measured to be about 10 microns, which is comparable to the lateral resolution of most OCT system. Targeted phantom sample and biological samples were manually scanned and the reconstructed images verified the method.

Next, we investigated a mechanical way to steer the beam in an OCT endoscope, which is termed as Paired-angle-rotation scanning (PARS). This concept was proposed by my colleague and we further developed this technology by enhancing the longevity of the device, reducing the diameter of the probe, and shrinking down the form factor of the hand-piece. Several families of probes have been designed and fabricated with various optical performances. They have been applied to different applications, including the collector channel examination for glaucoma stent implantation, and vitreous remnant detection during live animal vitrectomy.

Lastly a novel non-moving scanning method has been devised. This approach is based on the EO effect of a KTN crystal. With Ohmic contact of the electrodes, the KTN crystal can exhibit a special mode of EO effect, termed as space-charge-controlled electro-optic effect, where the carrier electron will be injected into the material via the Ohmic contact. By applying a high voltage across the material, a linear phase profile can be built under this mode, which in turn deflects the light beam passing through. We constructed a relay telescope to adapt the KTN deflector into a bench top OCT scanning system. One of major technical challenges for this system is the strong chromatic dispersion of KTN crystal within the wavelength band of OCT system. We investigated its impact on the acquired OCT images and proposed a new approach to estimate and compensate the actual dispersion. Comparing with traditional methods, the new method is more computational efficient and accurate. Some biological samples were scanned by this KTN based system. The acquired images justified the feasibility of the usage of this system into a endoscopy setting. My research above all aims to provide solutions to implement an OCT endoscope. As technology evolves from manual, to mechanical, and to electrical approaches, different solutions are presented. Since all have their own advantages and disadvantages, one has to determine the actual requirements and select the best fit for a specific application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: To determine the prevalence and classification of bifid mandibular canals using cone beam computed tomography (CBCT). Methods: The sample comprised 300 CBCT scans obtained from the Radiology and Imaging Department database at São Leopoldo Mandic Dental School, Campinas, SP, Brazil. All images were performed on Classic I-Cat® CBCT scanner, with standardized voxel at 0.25 mm and 13 cm FOV (field of view). From an axial slice (0.25 mm) a guiding plane was drawn along the alveolar ridge in order to obtain a cross-section. Results: Among 300 patients, 188 (62.7%) were female and 112 (37.3%) were male, aged between 13 to 87 years. Changes in the mandibular canal were observed in 90 patients, 30.0% of the sample, 51 women (56.7%) and 39 men (43.3%). Regarding affected sides, 32.2% were on the right and 24.5% on the left, with 43.3% bilateral cases. Conclusions: According to the results obtained in this study, a prevalence of 30% of bifid mandibular canals was found, with the most prevalent types classified as B (mesial direction) and bilateral.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The project aims to experiment the Cone Beam Breast Computed Tomography technique using a standard digital mammography system. The work is focused on the definition of a protocol of quality measurements for the pre-clinical evaluation of the machine. The paper is developed in two parts. The first is specifically concerned with the methods used to define the image quality and dosimetry aspects specific for digital mammography devices. A complete characterization of the system has been performed according to the applicable IEC standards to assure the performances of the equipment and define the quality levels. Due to the lack of a quality control protocol dedicated to CBBCT mammography scanner, a new equivalent test procedure has been proposed. The second part of the paper is focused on the evaluation, through quantitative and visual analyzes, of the CBCT exam feasibility in the hardware and software conditions currently proposed by IMS Giotto. The prototype was in fact developed differing from the technical choices of competing companies and developed for a different intended use. The main difference with respect to the existing breast CT scanners is the possibility of performing on the same system the CBBCT scanning but also all the mammographic techniques. In this thesis, we aim to assess whether, in the current setup, considering a dosimetric range very close to that used in the clinic, the tests produce results that can be considered acceptable or at least indicative of the feasibility of the entire project from a commercial point of view. For this purpose, the final reconstruction images, obtained by two previously developed software, are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUÇÃO: quanto menor a dimensão do voxel, maior a nitidez da imagem de tomografia computadorizada Cone-Beam (TCCB), porém, maior a dose de radiação emitida. OBJETIVOS: avaliar e comparar a reprodutibilidade da mensuração da espessura das tábuas ósseas vestibular e lingual em imagens de TCCB, utilizando diferentes protocolos de aquisição de imagem com variação da dimensão do voxel. MÉTODOS: exames de TCCB foram tomados de 12 mandíbulas humanas secas, com dimensão do voxel de 0,2; 0,3 e 0,4mm, no aparelho i-CAT Cone-Beam 3-D Dental Imaging System. No software i-CAT Viewer, foi mensurada a espessura das tábuas ósseas vestibular e lingual, em um corte axial passando 12mm acima do forame mentoniano do lado direito. A reprodutibilidade intraexaminador foi avaliada por meio da aplicação do teste t pareado. Para a comparação interexaminadores, foi utilizado o teste t independente. Os resultados foram considerados com o nível de significância de 5%. RESULTADOS: observou-se uma excelente reprodutibilidade interexaminadores para os três protocolos avaliados. A reprodutibilidade intraexaminadores foi muito boa, com exceção de algumas regiões dos dentes anteriores, que mostraram diferenças estatisticamente significativas, independentemente da dimensão do voxel. CONCLUSÃO: a mensuração da espessura das tábuas ósseas vestibular e lingual em imagens de TCCB mostrou boa precisão para exames obtidos com voxel de 0,2; 0,3 ou 0,4mm. A reprodutibilidade das mensurações na região anterior da mandíbula foi mais crítica do que na região posterior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUÇÃO: a espessura das tábuas ósseas que recobrem os dentes por vestibular e lingual constitui um dos fatores limitantes da movimentação dentária. O avanço tecnológico em Imaginologia permitiu avaliar detalhadamente essas regiões anatômicas por meio da utilização da tomografia computadorizada de feixe cônico (TCFC). OBJETIVO: descrever e padronizar, pormenorizadamente, um método para mensuração das tábuas ósseas vestibular e lingual dos maxilares nas imagens de tomografia computadorizada de feixe cônico. METODOLOGIA: a padronização digital da posição da imagem da face deve constituir o primeiro passo antes da seleção dos cortes de TCFC. Dois cortes axiais de cada maxilar foram empregados para a mensuração da espessura do osso alveolar vestibular e lingual. Utilizou-se como referência a junção cemento-esmalte dos primeiros molares permanentes, tanto na arcada superior quanto na inferior. RESULTADOS: cortes axiais paralelos ao plano palatino foram indicados para avaliação quantitativa do osso alveolar na maxila. Na arcada inferior, os cortes axiais devem ser paralelos ao plano oclusal funcional. CONCLUSÃO: o método descrito apresenta reprodutibilidade para utilização em pesquisas, assim como para a avaliação clínica das repercussões periodontais da movimentação dentária, ao permitir a comparação de imagens pré e pós-tratamento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Letter reports on a search for nu(mu)->nu(e) transitions by the MINOS experiment based on a 3.14x10(20) protons-on-target exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of 27 +/- 5(stat)+/- 2(syst) events predicted by the measurements in the Near Detector. If interpreted in terms of nu(mu)->nu(e) oscillations, this 1.5 sigma excess of events is consistent with sin(2)(2 theta(13)) comparable to the CHOOZ limit when |Delta m(2)|=2.43x10(-3) eV(2) and sin(2)(2 theta(23))=1.0 are assumed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the measurement of nonphotonic electron production at high transverse momentum (p(T) > 2.5 GeV/c) in p + p collisions at root s = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured nonphotonic electron cross sections with previously published RHIC data and perturbative quantum chromodynamics calculations. Using the relative contributions of B and D mesons to nonphotonic electrons, we determine the integrated cross sections of electrons (e++e-2/2) at 3 GeV/c < p(T) < 10 GeV/c from bottom and charm meson decays to be [(d sigma((B -> e)+(B -> D -> e))/(dy(e))](ye=0) 4.0 +/- 0.5(stat) +/- 1.1(syst) nb and [(d sigma(D -> e))/(dy(e))](ye=0) = 6.2 +/- 0.7(stat) +/- 1.5(syst) nb, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).