932 resultados para Electromagnetism in medicine.
Resumo:
The purpose of this work was to study and quantify the differences in dose distributions computed with some of the newest dose calculation algorithms available in commercial planning systems. The study was done for clinical cases originally calculated with pencil beam convolution (PBC) where large density inhomogeneities were present. Three other dose algorithms were used: a pencil beam like algorithm, the anisotropic analytic algorithm (AAA), a convolution superposition algorithm, collapsed cone convolution (CCC), and a Monte Carlo program, voxel Monte Carlo (VMC++). The dose calculation algorithms were compared under static field irradiations at 6 MV and 15 MV using multileaf collimators and hard wedges where necessary. Five clinical cases were studied: three lung and two breast cases. We found that, in terms of accuracy, the CCC algorithm performed better overall than AAA compared to VMC++, but AAA remains an attractive option for routine use in the clinic due to its short computation times. Dose differences between the different algorithms and VMC++ for the median value of the planning target volume (PTV) were typically 0.4% (range: 0.0 to 1.4%) in the lung and -1.3% (range: -2.1 to -0.6%) in the breast for the few cases we analysed. As expected, PTV coverage and dose homogeneity turned out to be more critical in the lung than in the breast cases with respect to the accuracy of the dose calculation. This was observed in the dose volume histograms obtained from the Monte Carlo simulations.
Resumo:
Monte Carlo (code GEANT) produced 6 and 15 MV phase space (PS) data were used to define several simple photon beam models. For creating the PS data the energy of starting electrons hitting the target was tuned to get correct depth dose data compared to measurements. The modeling process used the full PS information within the geometrical boundaries of the beam including all scattered radiation of the accelerator head. Scattered radiation outside the boundaries was neglected. Photons and electrons were assumed to be radiated from point sources. Four different models were investigated which involved different ways to determine the energies and locations of beam particles in the output plane. Depth dose curves, profiles, and relative output factors were calculated with these models for six field sizes from 5x5 to 40x40cm2 and compared to measurements. Model 1 uses a photon energy spectrum independent of location in the PS plane and a constant photon fluence in this plane. Model 2 takes into account the spatial particle fluence distribution in the PS plane. A constant fluence is used again in model 3, but the photon energy spectrum depends upon the off axis position. Model 4, finally uses the spatial particle fluence distribution and off axis dependent photon energy spectra in the PS plane. Depth dose curves and profiles for field sizes up to 10x10cm2 were not model sensitive. Good agreement between measured and calculated depth dose curves and profiles for all field sizes was reached for model 4. However, increasing deviations were found for increasing field sizes for models 1-3. Large deviations resulted for the profiles of models 2 and 3. This is due to the fact that these models overestimate and underestimate the energy fluence at large off axis distances. Relative output factors consistent with measurements resulted only for model 4.
Resumo:
Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.
Resumo:
1H-magnetic resonance spectroscopy ((1)H-MRS) of deoxymyoglobin (DMb) provides a means to noninvasively monitor the oxygenation state of human skeletal muscle in work and disease. As shown in this work, it also offers the opportunity to measure the absolute tissue content of DMb, the basic oxygen consumption of resting muscle, and the reperfusion characteristics after release of a pressure cuff. The methodology to determine these tissue properties simultaneously at two positions along the calf is presented. The obtained values are in agreement with invasive determinations. The reproducibility of the (1)H-MRS measurements is established for healthy controls and patients with peripheral arterial disease (PAD). A location dependence in axial direction, as well as differences between controls and patients are demonstrated for all parameters. The reoxygenation time in particular is expected to provide a means to quantitatively monitor therapies aimed at improving muscular perfusion in these patients.
Resumo:
The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.
Resumo:
The purpose of this study was to assess if delayed gadolinium MRI of cartilage using postcontrast T(1) (T(1Gd)) is sufficient for evaluating cartilage damage in femoroacetabular impingement without using noncontrast values (T(10)). T(1Gd) and DeltaR(1) (1/T(1Gd) - 1/T(10)) that include noncontrast T(1) measurements were studied in two grades of osteoarthritis and in a control group of asymptomatic young-adult volunteers. Differences between T(1Gd) and DeltaR(1) values for femoroacetabular impingement patients and volunteers were compared. There was a very high correlation between T(1Gd) and DeltaR(1) in all study groups. In the study cohort with Tonnis grade 0, correlation (r) was -0.95 and -0.89 with Tonnis grade 1 and -0.88 in asymptomatic volunteers, being statistically significant (P < 0.001) for all groups. For both T(1Gd) and DeltaR(1), a statistically significant difference was noted between patients and control group. Significant difference was also noted for both T(1Gd) and DeltaR(1) between the patients with Tonnis grade 0 osteoarthritis and those with grade 1 changes. Our results prove a linear correlation between T(1Gd) and DeltaR(1), suggesting that T(1Gd) assessment is sufficient for the clinical utility of delayed gadolinium MRI of cartilage in this setting and additional time-consuming T(10) evaluation may not be needed.
Resumo:
Absolute quantitation of clinical (1)H-MR spectra is virtually always incomplete for single subjects because the separate determination of spectrum, baseline, and transverse and longitudinal relaxation times in single subjects is prohibitively long. Integrated Processing and Acquisition of Data (IPAD) based on a combined 2-dimensional experimental and fitting strategy is suggested to substantially improve the information content from a given measurement time. A series of localized saturation-recovery spectra was recorded and combined with 2-dimensional prior-knowledge fitting to simultaneously determine metabolite T(1) (from analysis of the saturation-recovery time course), metabolite T(2) (from lineshape analysis based on metabolite and water peak shapes), macromolecular baseline (based on T(1) differences and analysis of the saturation-recovery time course), and metabolite concentrations (using prior knowledge fitting and conventional procedures of absolute standardization). The procedure was tested on metabolite solutions and applied in 25 subjects (15-78 years old). Metabolite content was comparable to previously found values. Interindividual variation was larger than intraindividual variation in repeated spectra for metabolite content as well as for some relaxation times. Relaxation times were different for various metabolite groups. Parts of the interindividual variation could be explained by significant age dependence of relaxation times.
Resumo:
In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.
Resumo:
In this study the distribution of intramyocellular lipids (IMCL) in human calf muscles was determined by 1H-MR spectroscopic imaging (MRSI) measurements. An obstacle for MRSI measurements in the calf, including different muscles, is the inevitable inclusion of regions with high concentrations of extramyocellular lipids (EMCL). This can lead to signal bleeding and consequently to unpredictable overlaps of IMCL resonances with EMCL in voxels of interest. The results of this study show that signal bleeding from EMCL can be substantially reduced in voxels from calf muscles by the application of a lipid extrapolation (LE) procedure (Haupt et al., Magn Reson Med 1996;35:678). The spectra of all voxels located within muscle tissue were fitted, and the metabolite values were assigned to one of 10 different muscles based on image segmentation. Significant IMCL differences between some muscles were obtained, with high values in m. soleus and two to three times lower values in the tibialis anterior, tibialis posterior, and gastrocnemius muscles. In addition to gross differences between muscles, significant intersubject differences were observed in both IMCL content and distribution over different muscles. A significant correlation between fiber orientation (obtained from orientation-dependent dipolar coupling of creatine and taurine resonances) and IMCL content was found, indicating that IMCL content is directly correlated to biomechanical properties.
Resumo:
The reproducibility of metabolite content determined by MR spectroscopy (MRS) is usually at best a few percent for the prominent singlets. When studying low-concentration metabolites, like phenylalanine (Phe), where tissue content can be <100 micromol/kg, better reproducibility is paramount-particularly in view of using MRS results for potential individual treatment advice. An optimized, targeted spectroscopy method was established at 1.5T and reproducibility was established in 21 patients with phenylketonuria (PKU) where three spectra were recorded in each of three independent sessions, two of which were in immediate succession to minimize physiologic variation. Intersession variation was found to be only 7 micromol/kg Phe for back-to-back repetition of sessions, in close agreement with the variation of 16 micromol/kg observed for single spectra within a session. Analysis of variance proved the individuality of the blood/brain Phe ratio-though this ratio seems to be influenced by physiologic factors that are not stable in time. The excellent reproducibility was achieved through optimization of various factors, including signal-to-noise ratio, repositioning, and prescan calibrations, but also by enforcing as much prior information as possible (e.g., lineshape and phase from reference scans, constant prior-knowledge-locked baseline). While the application of maximum general prior knowledge is a general method to reduce fluctuations, one should remember that it may introduce systematic errors.
Resumo:
Aim of this paper is to evaluate the diagnostic contribution of various types of texture features in discrimination of hepatic tissue in abdominal non-enhanced Computed Tomography (CT) images. Regions of Interest (ROIs) corresponding to the classes: normal liver, cyst, hemangioma, and hepatocellular carcinoma were drawn by an experienced radiologist. For each ROI, five distinct sets of texture features are extracted using First Order Statistics (FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray Level Difference Method (GLDM), Laws' Texture Energy Measures (TEM), and Fractal Dimension Measurements (FDM). In order to evaluate the ability of the texture features to discriminate the various types of hepatic tissue, each set of texture features, or its reduced version after genetic algorithm based feature selection, was fed to a feed-forward Neural Network (NN) classifier. For each NN, the area under Receiver Operating Characteristic (ROC) curves (Az) was calculated for all one-vs-all discriminations of hepatic tissue. Additionally, the total Az for the multi-class discrimination task was estimated. The results show that features derived from FOS perform better than other texture features (total Az: 0.802+/-0.083) in the discrimination of hepatic tissue.
Resumo:
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy.