993 resultados para Electro-magnetic showers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results from electromagnetic induction surveys of sea-ice thickness in Storfjorden, Svalbard, reveal large interannual ice-thickness variations in a region which is typically characterized by a reoccurring polynya. The surveys were performed in March 2003, May 2006 and March 2007 with helicopter- and ship-based sensors. The thickness distributions are influenced by sea-ice and atmospheric boundary conditions 2 months prior to the surveys, which are assessed with synthetic aperture radar (SAR) images, regional QuikSCAT backscatter maps and wind information from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Locally formed thin ice from the Storfjorden polynya was frequently observed in 2003 and 2007 (mean thickness 0.55 and 0.37 m, respectively) because these years were characterized by prevailing northeasterly winds. In contrast, the entire fjord was covered with thick external sea ice in 2006 (mean thickness 2.21 m), when ice from the Barents Sea was driven into the fjord by predominantly southerly winds. The modal thickness of this external ice in 2006 increased from 1.2 m in the northern fjord to 2.4 m in the southern fjord, indicating stronger deformation in the southern part. This dynamically thickened ice was even thicker than multi-year ice advected from the central Arctic Ocean in 2003 (mean thickness 1.83 m). The thermodynamic ice thickness of fast ice as boundary condition is investigated with a one-dimensional sea-ice growth model (1DICE) forced with meteorological data from the weather station at the island of Hopen, southeast of Storfjorden. The model results are in good agreement with the modal thicknesses of fast-ice measurements in all years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Helicopter-borne electromagnetic sea ice thickness measurements were performed over the Transpolar Drift in late summers of 2001, 2004, and 2007, continuing ground-based measurements since 1991. These show an ongoing reduction of modal and mean ice thicknesses in the region of the North Pole of up to 53 and 44%, respectively, since 2001. A buoy derived ice age model showed that the thinning was mainly due to a regime shift from predominantly multi- and second-year ice in earlier years to first-year ice in 2007, which had modal and mean summer thicknesses of 0.9 and 1.27 m. Measurements of second-year ice which still persisted at the North Pole in April 2007 indicate a reduction of late-summer second-year modal and mean ice thicknesses since 2001 of 20 and 25% to 1.65 and 1.81 m, respectively. The regime shift to younger and thinner ice could soon result in an ice free North Pole during summer.