944 resultados para Electric power systems-protection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aborda a classificação automática de faltas do tipo curto-circuito em linhas de transmissão. A maioria dos sistemas de transmissão possuem três fases (A, B e C). Por exemplo, um curto-circuito entre as fases A e B pode ser identicado como uma falta\AB". Considerando a possibilidade de um curto-circuito com a fase terra (T), a tarefa ao longo desse trabalho de classificar uma série temporal em uma das 11 faltas possíveis: AT, BT, CT, AB, AC, BC, ABC, ABT, ACT, BCT, ABCT. Estas faltas são responsáveis pela maioria dos distúrbios no sistema elétrico. Cada curto-circuito é representado por uma seqüência (série temporal) e ambos os tipos de classificação, on-line (para cada curto segmento extraído do sinal) e off-line (leva em consideração toda a seqüência), são investigados. Para evitar a atual falta de dados rotulados, o simulador Alternative Transient Program (ATP) é usado para criar uma base de dados rotulada e disponibilizada em domínio público. Alguns trabalhos na literatura não fazem distinção entre as faltas ABC e ABCT. Assim, resultados distinguindo esse dois tipos de faltas adotando técnicas de pré-processamento, diferentes front ends (por exemplo wavelets) e algoritmos de aprendizado (árvores de decisão e redes neurais) são apresentados. O custo computacional estimado durante o estágio de teste de alguns classificadores é investigado e a escolha dos parâmetros dos classificadores é feita a partir de uma seleção automática de modelo. Os resultados obtidos indicam que as árvores de decisão e as redes neurais apresentam melhores resultados quando comparados aos outros classificadores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe uma estratégia fuzzy, do tipo Rede de Controladores Locais, aplicável à melhoria da estabilidade dinâmica em sistemas elétricos de potência, visando compensar possíveis perdas de sintonia devido à ocorrência de variações nas condições operacionais da planta. A adaptação dos ganhos do controlador fuzzy é efetuada on-line, interpolando-se os ganhos de um conjunto finito de controladores locais fixos. Ao ocorrer variações nas condições operacionais da planta, os ganhos da lei de controle são ajustados automaticamente de modo a manter satisfatório o desempenho do sistema de controle. O desempenho do controle foi avaliado através de estudos de simulação, utilizando-se um modelo dinâmico não-linear, do tipo máquina barra infinita. Os resultados mostram que o emprego da estratégia proposta permite obter melhorias no desempenho dinâmico do sistema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A utilização de Estabilizadores de Sistemas de Potência (ESP), para amortecer oscilações eletromecânicas de pequena magnitude e baixa freqüência, é cada vez mais importante na operação dos modernos sistemas elétricos. Estabilizadores convencionais, com estrutura e parâmetros fixos, têm sido utilizados com essa finalidade há algumas décadas, porém existem regiões de operação do sistema nas quais esses estabilizadores lineares não são tão eficientes, especialmente quando comparados com estabilizadores projetados através de modernas técnicas de controle. Um ESP Neural, treinado a partir de um conjunto de controladores lineares locais, é utilizado para investigar em quais regiões de operação do sistema elétrico o desempenho do estabilizador a parâmetros fixos é deteriorada. O melhor desempenho do ESP Neural nessas regiões de operação, quando comparado com o ESP convencional, é demonstrado através de simulações digitais não-lineares de um sistema do tipo máquina síncrona conectada a um barramento infinito e de um sistema com quatro geradores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os materiais amorfos vêm ganhando grande espaço na indústria de transformadores, devido às baixas perdas no núcleo, visto que estes possuem um ciclo de histerese mais estreito quando comparados com os núcleos tradicionais de aço silício. Entretanto, seu custo ainda tem sido um grande fator para pouca inserção deste tipo de equipamento nos sistemas elétricos de potência. Estudos sobre o custo/benefício em termos técnicos de desempenho e robustez devem ser considerados quando se deseja projetar transformadores que utilizam esse tipo de material. A grande contribuição deste trabalho encontra-se na análise do desempenho do transformador de núcleo amorfo diante de curtos-circuitos, visto que tais falhas neste equipamento ocasionam redução da receita, não apenas por gastos com manutenção, mas também porque a concessionária deixa de vender seu produto, energia elétrica, além de poder estar sujeita a penalidades por parte dos órgãos de regulação do setor elétrico. Quando em condições de curto-circuito os enrolamentos dos transformadores ficam submetidos a esforços mecânicos, produzidos por forças de Lorentz, essas forças surgem como resultado do fluxo produzido pelos próprios condutores em paralelo que transportam corrente na mesma direção. Diante disso, estudar o comportamento eletromagnético do transformador é fundamental para obtenção de tais forças. Para o desenvolvimento deste trabalho, utilizou-se o software Finite Element Method Magnetics (FEMM). Esta ferramenta se baseia no método de elementos finitos para realizar os cálculos das magnitudes eletromecânicas e, consequentemente, o cálculo das forças atuando nas espiras, as quais permitem realizar os cálculos dos esforços mecânicos. Por fim, este trabalho aborda a aplicação da ferramenta FEMM para o cálculo de esforços mecânicos e simulação do comportamento eletromagnético de um transformador de distribuição.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O atual modelo do setor elétrico brasileiro permite igualdade de condições a todos os agentes e reduz o papel do Estado no setor. Esse modelo obriga as empresas do setor a melhorarem cada vez mais a qualidade de seu produto e, como requisito para este objetivo, devem fazer uso mais efetivo da enorme quantidade de dados operacionais que são armazenados em bancos de dados, provenientes da operação dos seus sistemas elétricos e que tem nas Usinas Hidrelétricas (UHE) a sua principal fonte de geração de energia. Uma das principais ferramentas para gerenciamento dessas usinas são os sistemas de Supervisão, Controle e Aquisição de Dados (Supervisory Control And Data Acquisition - SCADA). Assim, a imensa quantidade de dados acumulados nos bancos de dados pelos sistemas SCADA, muito provavelmente contendo informações relevantes, deve ser tratada para descobrir relações e padrões e assim ajudar na compreensão de muitos aspectos operacionais importantes e avaliar o desempenho dos sistemas elétricos de potência. O processo de Descoberta de Conhecimento em Banco de Dados (Knowledge Discovery in Database - KDD) é o processo de identificar, em grandes conjuntos de dados, padrões que sejam válidos, novos, úteis e compreensíveis, para melhorar o entendimento de um problema ou um procedimento de tomada de decisão. A Mineração de Dados (ou Data Mining) é o passo dentro do KDD que permite extrair informações úteis em grandes bases de dados. Neste cenário, o presente trabalho se propõe a realizar experimentos de mineração de dados nos dados gerados por sistemas SCADA em UHE, a fim de produzir informações relevantes para auxiliar no planejamento, operação, manutenção e segurança das hidrelétricas e na implantação da cultura da mineração de dados aplicada a estas usinas.