995 resultados para Elastic waves
Resumo:
It is proposed that the mathematical analysis of the Alfven wave equation in inhomogeneous magnetic fields which explain the resonance absorption of Alfven surface waves near a resonant layer can also be used to show that the magnetic reconnection process can arise near the zero-frequency resonant layer driven by VLF Alfven surface waves. It is suggested that the associated phenomena of resonant absorption and magnetic reconnection can account for the recent observations of intense magnetic activity in the long-period geomagnetic micropulsation range, at cusp latitudes, during flux transfer events.
Resumo:
The conditions under which the hydromagnetic interface waves can exist at a magnetic interface is deduced. Using these conditions, it is shown that a slow interface wave with a phase velocity about 5Km/s and a fast interface wave with a phase velocity 6.5 to 8km/s at the photospheric level can exist.
Resumo:
An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.
Resumo:
The Landau damping of sound waves in a plasma consisting of ensemble of magnetic flux tubes is discussed. It is shown that sound waves cannot be Landau damped in general but under certain restricted conditions on plasma parameters the possibility of absorption of these waves can exist. The possibility of radiative damping of the acoustic waves along the magnetic filaments is also discussed. It appears that the most plausible mechanism of damping of sound waves in a plasma consisting of magnetic filaments can be due to scattering of a sound wave by the filaments.
Resumo:
The stability characteristics of a conservatively loaded structure are expected to improve if additional supports are provided to the structure. The same, however, may not be said of a non-conservatively loaded structure; several factors, such as the location and stiffness of supports, type of structure and loading, have a significant influence on the stability characteristics. The influence of an arbitrarily located elastic support on the stability characteristics of a Leipholz column is examined.
Resumo:
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.
Resumo:
In this paper, dynamic response of an infinitely long beam resting on a foundation of finite depth, under a moving force is studied. The effect of foundation inertia is included in the analysis by modelling the foundation as a series of closely spaced axially vibrating rods of finite depth, fixed at the bottom and connected to the beam at the top. Viscous damping in the beam and foundation is included in the analysis. Steady state response of the beam-foundation system is obtained. Detailed numerical results are presented to study the effect of various parameters such as foundation mass, velocity of the moving load, damping and axial force on the beam. It is shown that foundation inertia can considerably reduce the critical velocity and can also amplify the beam response.
Resumo:
A block of high-purity copper was indented by a 120-degrees diamond-tipped cone. Strain gauges were placed on the surface to measure the radial strains at different surface locations, during loading as well as unloading. The competence of three stress fields proposed for elastic-plastic indentation is assessed by comparing the predicted surface radial strains with those experimentally observed.
Resumo:
Low interlaminar strength and the consequent possibility of interlaminar failures in composite laminates demand an examination of interlaminar stresses and/or strains to ensure their satisfactory performance. As a first approximation, these stresses can be obtained from thickness-wise integration of ply equilibrium equations using in-plane stresses from the classical laminated plate theory. Implementation of this approach in the finite element form requires evaluation of third and fourth order derivatives of the displacement functions in an element. Hence, a high precision element developed by Jayachandrabose and Kirkhope (1985) is used here and the required derivatives are obtained in two ways. (i) from direct differentiation of element shape functions; and (ii) by adapting a finite difference technique applied to the nodal strains and curvatures obtained from the finite element analysis. Numerical results obtained for a three-layered symmetric and a two-layered asymmetric laminate show that the second scheme is quite effective compared to the first scheme particularly for the case of asymmetric laminates.
Resumo:
Normal mode sound propagation in an isovelocity ocean with random narrow-band surface waves is considered, assuming the root-mean-square wave height to be small compared to the acoustic wavelength. Nonresonant interaction among the normal modes is studied straightforward perturbation technique. The more interesting case of resonant interaction is investigated using the method of multiple scales to obtain a pair of stochastic coupled amplitude equations which are solved using the Peano-Baker expansion technique. Equations for the spatial evolution of the first and second moments of the mode amplitudes are also derived and solved. It is shown that, irrespective of the initial conditions, the mean values of the mode amplitudes tend to zero asymptotically with increasing range, the mean-square amplitudes tend towards a state of equipartition of energy, and the total energy of the modes is conserved.
Resumo:
In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finite-element mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step, (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a `leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (R) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case.