985 resultados para Effector T cells
Resumo:
Uncontrolled cell proliferation is a major feature of cancer. Experimental cellular models have implicated some members of the Rho GTPase family in this process. However, direct evidence for active Rho GTPases in tumors or cancer cell lines has never been provided. In this paper, we show that endogenous, hyperactive Rac3 is present in highly proliferative human breast cancer-derived cell lines and tumor tissues. Rac3 activity results from both its distinct subcellular localization at the membrane and altered regulatory factors affecting the guanine nucleotide state of Rac3. Associated with active Rac3 was deregulated, persistent kinase activity of two isoforms of the Rac effector p21-activated kinase (Pak) and of c-Jun N-terminal kinase (JNK). Introducing dominant-negative Rac3 and Pak1 fragments into a breast cancer cell line revealed that active Rac3 drives Pak and JNK kinase activities by two separate pathways. Only the Rac3–Pak pathway was critical for DNA synthesis, independently of JNK. These findings identify Rac3 as a consistently active Rho GTPase in human cancer cells and suggest an important role for Rac3 and Pak in tumor growth.
Resumo:
While effector molecules produced by activated macrophages (including nitric oxide, tumor necrosis factor α, interleukin 1, etc.) help to eliminate pathogens, high levels of these molecules can be deleterious to the host itself. Despite their importance, the mechanisms modulating macrophage effector functions are poorly understood. This work introduces two key negative regulators that control the levels and duration of macrophage cytokine production. Vacuolar-type H+-ATPase (V-ATPase) and calcineurin (Cn) constitutively act in normal macrophages to suppress expression of inflammatory cytokines in the absence of specific activation and to inhibit macrophage cytokine responses induced by bacterial lipopolysaccharide (V-ATPase), interferon γ (V-ATPase and Cn), and calcium (Ca2+) flux (Cn). Cn and V-ATPase modulate effector gene expression at the mRNA level by inhibiting transcription factor NF-κB. This negative regulation by Cn is opposite to its crucial positive role in T cells, where it activates NFAT transcription factor(s) leading to expression of interleukin 2, tumor necrosis factor α, and other cytokine genes. The negative effects of V-ATPase and Cn on NF-κB-dependent gene expression are not limited to the macrophage lineage, as similar effects have been seen with a murine fibroblast cell line and with primary astrocytes.
Resumo:
Mature immunologically competent dendritic cells are the most efficient antigen-presenting cells that powerfully activate T cells and initiate and sustain immune responses. Indeed, dendritic cells are able to efficiently capture antigens, express high levels of costimulatory molecules, and produce the combination of cytokines required to create a powerful immune response. They are also considered to be important in initiating autoimmune disease by efficiently presenting autoantigens to self-reactive T cells that, in this case, will mount a pathogenic autoimmune reaction. Triggering T cells is not a simple on–off procedure, as T cell receptor responds to minor changes in ligand with gradations of T cell activation and effector functions. These “misfit” peptides have been called Altered Peptide Ligands, and have been shown to have important biological significance. Here, we show that fully capable dendritic cells may present, upon natural antigen processing, a self-epitope with Altered Peptide Ligands features that can unexpectedly induce anergy in a human autoreactive T cell clone. These results indicate that presentation of a self-epitope by immunologically competent dendritic cells does not always mean “danger” and show a mechanism involved in the fine balance between activation and tolerance induction in humans.
Resumo:
The small GTPase Rab4 is implicated in endocytosis in all cell types, but also plays a specific role in some regulated processes. To better understand the role of Rab4 in regulation of vesicular trafficking, we searched for an effector(s) that specifically recognizes its GTP-bound form. We cloned a ubiquitous 69-kDa protein, Rabip4, that behaves as a Rab4 effector in the yeast two-hybrid system and in the mammalian cell. Rabip4 contains two coiled-coil domains and a FYVE-finger domain. When expressed in CHO cells, Rabip4 is present in early endosomes, because it is colocated with endogenous Early Endosome Antigen 1, although it is absent from Rab11-positive recycling endosomes and Rab-7 positive late endosomes. The coexpression of Rabip4 with active Rab4, but not with inactive Rab4, leads to an enlargement of early endosomes. It strongly increases the degree of colocalization of markers of sorting (Rab5) and recycling (Rab11) endosomes with Rab4. Furthermore, the expression of Rabip4 leads to the intracellular retention of a recycling molecule, the glucose transporter Glut 1. We propose that Rabip4, an effector of Rab4, controls early endosomal traffic possibly by activating a backward transport step from recycling to sorting endosomes.
Resumo:
A deranged expression of MHC class I glycoproteins, characteristic of a variety of malignancies, contributes to the ability of cancer to avoid destruction by T cell-mediated immunity. An abrogation of the metastatic capacity of B16 melanoma cells has been achieved by transfecting an MHC class I-encoding vector into class I-deficient B16 melanoma clones [Gorelik, E., Kim, M., Duty, L. & Galili, U. (1993) Clin. Exp. Metastasis 11, 439–452]. We report here that the deranged expression of class I molecules by B16 melanoma cells is more than a mere acquisition of the capacity to escape immune recognition. Namely, cells of the B16 melanoma prompted splenic lymphocytes to commit death after coculture. However, a class I-expressing and nonmetastatic CL8-2 clone was found to be less potent as an inducer of apoptosis than class I-deficient and metastatic BL9 and BL12 clones. Both Thy1.2+ and Thy1.2− splenocytes underwent cell death when exposed to the class I-deficient BL9 clone. A proportion of CD4+ and CD8+ cells among splenocytes exposed to the BL9 clone was lower than that observed in a coculture with cells of the CL8-2 clone. Consistently, none of the melanoma clones studied produced a ligand to the FAS receptor (FAS-L). Thus, our results provide evidence that (i) the production of FAS-L may not be the sole mechanism by which malignant cells induce apoptosis in immunocytes, and (ii) absence of MHC class I glycoproteins plays an important role in preventing the elimination of potential effector immunocytes by tumor cells.
Resumo:
Lipid rafts are microdomains present within membranes of most cell types. These membrane microdomains, which are enriched in cholesterol and glycosphingolipids, have been implicated in the regulation of certain signal transduction and membrane traffic pathways. To investigate the possibility that lipid rafts organize exocytotic pathways in neuroendocrine cells, we examined the association of proteins of the exocytotic machinery with rafts purified from PC12 cells. The target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (tSNARE) proteins syntaxin 1A and synaptosomal-associated protein of 25 kDa (SNAP-25) were both found to be highly enriched in lipid rafts (≈25-fold). The vesicle SNARE vesicle-associated membrane protein (VAMP)2 was also present in raft fractions, but the extent of this recovery was variable. However, further analysis revealed that the majority of VAMP2 was associated with a distinct class of raft with different detergent solubility characteristics to the rafts containing syntaxin 1A and SNAP-25. Interestingly, no other studied secretory proteins were significantly associated with lipid rafts, including SNARE effector proteins such as nSec1. Chemical crosslinking experiments showed that syntaxin1A/SNAP-25 heterodimers were equally present in raft and nonraft fractions, whereas syntaxin1A/nSec1 complexes were detected only in nonraft fractions. SDS-resistance assays revealed that raft-associated syntaxin1A/SNAP-25 heterodimers were able to interact with VAMP2. Finally, reduction of cellular cholesterol levels decreased the extent of regulated exocytosis of dopamine from PC12 cells. The results described suggest that the interaction of SNARE proteins with lipid rafts is important for exocytosis and may allow structural and spatial organization of the secretory machinery.
Resumo:
Trimolecular interactions between the T cell antigen receptor and MHC/peptide complexes, together with costimulatory molecules and cytokines, control the initial activation of naïve T cells and determine whether the helper precursor cell differentiates into either T helper (TH)1 or TH2 effector cells. We now present evidence that regulatory CD8+ T cells provide another level of control of TH phenotype during further evolution of immune responses. These regulatory CD8+ T cells are induced by antigen-triggered CD4+ TH1 cells during T cell vaccination and, in vitro, distinguish mature TH1 from TH2 cells in a T cell antigen receptor Vβ-specific and Qa-1-restricted manner. In vivo, protection from experimental autoimmune encephalomyelitis (EAE) induced by T cell vaccination depends on CD8+ T cells, and myelin basic protein-reactive TH1 Vβ8+ clones, but not TH2 Vβ8+ clones, used as vaccine T cells, protect animals from subsequent induction of EAE. Moreover, in vivo depletion of CD8+ T cells during the first episode of EAE results in skewing of the TH phenotype toward TH1 upon secondary myelin basic protein stimulation. These data provide evidence that CD8+ T cells control autoimmune responses, in part, by regulating the TH phenotype of self-reactive CD4+ T cells.
Resumo:
Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNALeu gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens.
Resumo:
The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of “effector-loop” mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors.
Resumo:
It has been suggested that anergic T cells may not be only inert cells but may rather play an active role, for example by regulating immune responses. We have previously reported the existence of “anergic” IL-10-producing CD4+ T cells generated in vivo by continuous antigenic stimulation. Using a gene transfer system where the antigen recognized by such T cells is expressed in skeletal muscle by two different DNA viral vectors, we show that these cells not only remain tolerant toward their cognate antigen but also can suppress the immune response of naïve T cells against the immunogenic adenoviral proteins. Furthermore, they can completely inhibit tissue destruction that takes place as a result of an immune response. The system presented here is unique in that the T cells have been anergized in vivo, their antigen specificity and functional status are known, and the amount, form, and timing of antigen expression can be manipulated. This model will therefore permit us to carefully dissect the mechanisms by which these anergic T cells regulate the priming and/or effector function of naïve T cells.
Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy
Resumo:
Most tumor-associated antigens represent self-proteins and as a result are poorly immunogenic due to immune tolerance. Here we show that tolerance to carcinoembryonic antigen (CEA), which is overexpressed by the majority of lethal malignancies, can be reversed by immunization with a CEA-derived peptide. This peptide was altered to make it a more potent T cell antigen and loaded onto dendritic cells (DCs) for delivery as a cellular vaccine. Although DCs are rare in the blood, we found that treatment of advanced cancer patients with Flt3 ligand, a hematopoietic growth factor, expanded DCs 20-fold in vivo. Immunization with these antigen-loaded DCs induced CD8 cytotoxic T lymphocytes that recognized tumor cells expressing endogenous CEA. Staining with peptide-MHC tetramers demonstrated the expansion of CD8 T cells that recognize both the native and altered epitopes and possess an effector cytotoxic T lymphocyte phenotype (CD45RA+CD27−CCR7−). After vaccination, two of 12 patients experienced dramatic tumor regression, one patient had a mixed response, and two had stable disease. Clinical response correlated with the expansion of CD8 tetramer+ T cells, confirming the role of CD8 T cells in this treatment strategy.
Resumo:
Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.
Resumo:
Cytotoxic lymphocytes are characterized by their inclusion of cytoplasmic granules that fuse with the plasma membrane following target cell recognition. We previously identified a cytotoxic granule membrane protein designated p15-TIA-1 that is immunochemically related to an RNA-recognition motif (RRM)-type RNA-binding protein designated p40-TIA-1. Although it was suggested that p15-TIA-1 might be derived from p40-T1A-1 by proteolysis, N-terminal amino acid sequencing of p15-TIA-1 immunoaffinity purified from a natural killer (NK) cell line by using monoclonal antibody (mAb) 2G9 revealed that p15-T1A-1 is identical to the deduced amino acid sequence of NKG7 and GIG-1, cDNAs isolated from NK cells and granulocyte-colony-stimulating factor-treated mononuclear cells, respectively. Epitope mapping revealed that mAb 2G9 recognizes the C terminus of p15-T1A-1 and p40-T1A-1. The deduced amino acid sequence of p15-T1A-1/NKG7/GIG-1 predicts that the protein possesses four transmembrane domains, and immuno-electron microscopy localizes the endogenous protein to the membranes of cytotoxic granules in NK cells. Given its subcellular localization, we propose to rename-this protein GMP-17, for granule membrane protein of 17 kDa. Immunofluorescence microscopy of freshly isolated NK cells confirms this granular localization. Target cell-induced NK cell degranulation results in translocation of GMP-17 from granules to the plasma membrane, suggesting a possible role for GMP-17 in regulating the effector function of lymphocytes and neutrophils.
Resumo:
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTLs) are thought to play a major role in the immune response to HIV infection. The HIV-specific CTL response is much stronger than previously documented in an infectious disease, yet estimates of CTL frequency derived from limiting-dilution analysis (LDA) are relatively low and comparable to other viral infections. Here we show that individual CTL clones specific for peptides from HIV gag and pol gene products are present at high levels in the peripheral blood of three infected patients and that individual CTL clones may represent between 0.2% and 1% of T cells. Previous LDA in one donor had shown a frequency of CTL precursors of 1/8000, suggesting that LDA may underestimate CTL effector frequency. In some donors individual CTL clones persisted in vivo for at least 5 years. In contrast, in one patient there was a switch in CTL usage suggesting that different populations of CTLs can be recruited during infection. These data imply strong stimulation of CTLs, potentially leading some clones to exhaustion.
Resumo:
Granzyme (Gzm) B-deficient mice obtained by gene targeting were used to assess the role of Gzm B in the mechanisms used by natural killer (NK) and lymphokine-activated killer (LAK) cells to destroy target cells. Gzm B-/- NK cells, LAK cells, and cytotoxic T lymphocytes (CTL) all are defective in their ability to rapidly induce DNA fragmentation/apoptosis in susceptible target cells. This defect can be partially corrected with long incubation times of effector and target cells. Moreover, Gzm B-/- NK cells (but not CTL or LAK cells) exhibit a defect in 51Cr release from susceptible target cells. This 51Cr release defect in Gzm B-deficient NK cells is also not overcome by prolonged incubation times or high effector-to-target cell ratios. We conclude that Gzm B plays a critical and nonredundant role in the rapid induction of DNA fragmentation/apoptosis by NK cells, LAK cells, and CTL. Gzm B may have an additional role in NK cells (but not in CTL or LAK cells) for mediating 51Cr release.