971 resultados para EXCITATION CROSS-SECTIONS
Resumo:
A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.
Resumo:
We present a study of scattering of massless planar scalar waves by a charged nonrotating black hole. Partial wave methods are applied to compute scattering and absorption cross sections, for a range of incident wavelengths. We compare our numerical results with semiclassical approximations from a geodesic analysis, and find excellent agreement. The glory in the backward direction is studied, and its properties are shown to be related to the properties of the photon orbit. The effects of the black hole charge upon scattering and absorption are examined in detail. As the charge of the black hole is increased, we find that the absorption cross section decreases, and the angular width of the interference fringes of the scattering cross section at large angles increases. In particular, the glory spot in the backward direction becomes wider. We interpret these effects under the light of our geodesic analysis.
Resumo:
This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wave fronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.
Resumo:
High precision measurements of the differential cross sections for pi(0) photoproduction at forward angles for two nuclei, (12)C and (208)Pb, have been performed for incident photon energies of 4.9-5.5 GeV to extract the pi(0) -> gamma gamma decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The pi(0) -> gamma gamma decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is Gamma(pi(0) -> gamma gamma) = 7.82 +/- 0.14(stat) +/- 0.17(syst) eV. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current Particle Data Group average of this fundamental quantity, and it is consistent with current theoretical predictions.
Resumo:
Nb(3)Sn is one of the most used superconducting materials for applications in high magnetic fields. The improvement of the critical current densities (J(c)) is important, and must be analyzed together with the optimization of the flux pinning acting in the material. For Nb(3)Sn, it is known that the grain boundaries are the most effective pinning centers. However, the introduction of artificial pinning centers (APCs) with different superconducting properties has been proved to be beneficial for J(c). As these APCs are normally in the nanometric-scale, the conventional heat treatment profiles used for Nb(3)Sn wires cannot be directly applied, leading to excessive grain growth and/or increase of the APCs cross sections. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers in nanometric-scale were analyzed in an attempt to improve J(c) . It is described a methodology to optimize the heat treatment profiles in respect to diffusion, reaction and formation of the superconducting phases. Microstructural, transport and magnetic characterization were performed in an attempt to find the pinning mechanisms acting in the samples. It was concluded that the maximum current densities were found when normal phases (due to the introduction of the APCs) are acting as main pinning centers in the global behavior of the Nb(3)Sn superconducting wire.
Resumo:
A unidirectional fiber composite is considered here, the fibers of which are empty cylindrical holes periodically distributed in a transversely isotropic piezoelectric matrix, The empty-fiber cross-section is circular and the periodicity is the same in two directions at an angle pi/2 or pi/3. Closed-form formulae for all electromechanical effective properties of these 3-1 longitudinally periodic porous piezoelectric materials are presented. The derivation of such expressions is based on the asymptotic homogenization method as a limit of the effective properties of two-phase transversely isotropic parallel fiber-reinforced composites when the fibers properties tend to zero. The plane effective coefficients satisfy the corresponding Schulgasser-Benveniste-Dvorak universal type of relations, A new relation among the antiplane effective constants from the solutions of two antiplane strains and potential local problems is found. This relation is valid for arbitrary shapes of the empty-fiber cross-sections. Based on such a relation, and using recent numerical results for isotropic conductive composites, the antiplane effective properties are computed for different geometrical shapes of the empty-fiber cross-section. Comparisons with other analytical and numerical theories are presented. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The concrete offshore platforms, which are subjected a several loading combinations and, thus, requires an analysis more generic possible, can be designed using the concepts adopted to shell elements, but the resistance must be verify in particular cross-sections to shear forces. This work about design of shell elements will be make using the three-layer shell theory. The elements are subject to combined loading of membrane and plate, totalizing eight components of internal forces, which are three membrane forces, three moments (two out-of-plane bending moments and one in-plane, or torsion, moment) and two shear forces. The design method adopted, utilizing the iterative process proposed by Lourenco & Figueiras (1993) obtained from equations of equilibrium developed by Gupta (1896) , will be compared to results of experimentally tested shell elements found in the literature using the program DIANA.
Resumo:
This paper presents new experimental results of Vortex-Induced Vibration (VIV) on inclined cylinders. Models are mounted on a low damping air-bearing elastic base with one degree-of-freedom, constrained to oscillate only in the transverse direction to a free stream. The Reynolds number varied in the range 2000 less than or similar to Re less than or similar to 8000. New measurements on the dynamic response oscillations of inclined cylinders, due to VIV, are compared with previous experiments of a vertical cylinder. Models with circular and elliptical cross sections have been tested. The purpose of this work is to check the validity of the normal velocity correction of VIV studies of inclined structures. The results show that the reduced velocity range, in which the upper and lower branches of VIV occurs, is similar to the vertical cylinder case if the proper projected velocity is considered. Tests have been conducted to support this observation with inclinations up to 45 degrees. We have also observed that the amplitudes of oscillation of the inclined circular cylinder are comparable, but slightly lower than, to the amplitudes observed in the vertical cylinder experiments. Measured forces and added mass also show similar behaviour. However, for cases with an elliptical cylinder, the amplitudes of oscillation are considerably lower than those observed for a circular cylinder. This difference is explained by the higher added mass of the elliptical cylinder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
New differential linear coherent scattering coefficient, mu(CS), data for four biological tissue types (fat pork, tendon chicken, adipose and fibroglandular human breast tissues) covering a large momentum transfer interval (0.07 <= q <= 70.5 nm(-1)), resulted from combining WAXS and SAXS data, are presented in order to emphasize the need to update the default data-base by including the molecular interference and the large-scale arrangements effect. The results showed that the differential linear coherent scattering coefficient demonstrates influence of the large-scale arrangement, mainly due to collagen fibrils for tendon chicken and fibroglandular breast samples, and triacylglycerides for fat pork and adipose breast samples at low momentum transfer region. While, at high momentum transfer, the mu(CS) reflects effects of molecular interference related to water for tendon chicken and fibroglandular samples and, fatty acids for fat pork and adipose samples. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using synchrotron radiation, we combined simultaneously wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) techniques to obtain the scattering profiles of normal and neoplastic breast tissu-es samples at the momentum transfer range 6.28 nm(-1) <= Q(=4 pi.sin(theta/2)lambda) <= 50.26 nm(-1) and 0.15 nm(-1) <= Q <= 1.90 nm(-1), respectively. The results obtained show considerable differences between the scattering profiles of these tissues. We verified that the combination of some parameters (ratio between glandular and adipose peak intensity and third-order axial peak intensity) extracted from scattering profiles can be used for identifying breast cancer. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The suprathermal particles, electrons and protons, coming from the magnetosphere and precipitating into the high-latitude atmosphere are an energy source of the Earth's ionosphere. They interact with ambient thermal gas through inelastic and elastic collisions. The physical quantities perturbed by these precipitations, such as the heating rate, the electron production rate, or the emission intensities, can be provided in solving the kinetic stationary Boltzmann equation. This equation yields particle fluxes as a function of altitude, energy, and pitch angle. While this equation has been solved through different ways for the electron transport and fully tested, the proton transport is more complicated. Because of charge-changing reactions, the latter is a set of two-coupled transport equations that must be solved: one for protons and the other for H atoms. We present here a new approach that solves the multistream proton/hydrogen transport equations encompassing the collision angular redistributions and the magnetic mirroring effect. In order to validate our model we discuss the energy conservation and we compare with another model under the same inputs and with rocket observations. The influence of the angular redistributions is discussed in a forthcoming paper.
Resumo:
PURPOSE. The goal of this study was to determine whether the medial rectus muscles of patients with a history of medial rectus underaction or overaction show alterations in the process of satellite cell activation when compared with normal age-matched control muscles. METHODS. Medial rectus muscles were obtained with consent from adult patients undergoing surgical resection due to medial rectus underaction or overaction and were prepared for histologic examination by fixation and paraffin embedding. Control muscles were obtained from cornea donor eyes of adults who had no history of strabismus or neuromuscular disease. Cross sections were obtained and stained immunohistochemically for the presence of activated satellite cells, as identified by MyoD immunoreactivity, and the presence of the total satellite cell population, as identified by Pax7 immunoreactivity. The percentages of MyoD- and Pax7-positive satellite cells per 100 myofibers in cross section were calculated. RESULTS. As predicted from results in the literature, MyoD-positive satellite cells, indicative of activation, were present in both the control and resected muscles. In the underacting medial rectus muscles, the percentages of MyoD- and Pax7-positive satellite cells, based on the number of myofibers, were approximately twofold higher than the percentages in the control muscles. In the overacting medial rectus muscles, the percentage of MyoD- positive satellite cells was twofold less than in the control muscles, whereas the percentage of Pax7-positive satellite cells significantly increased compared with that in the control specimens. CONCLUSIONS. The presence of an increased number of activated satellite cells in the resected underacting medial rectus muscles and the decreased numbers of activated satellite cells in the overacting muscles was unexpected. The upregulation in the number of MyoD- positive satellite cells in underacting muscles suggests that there is potential for successful upregulation of size in these muscles, as the cellular machinery for muscle repair and regeneration, the satellite cells, is retained and active in patients with medial rectus underaction. The decreased number of activated satellite cells in overacting MR muscle suggests that factors as yet unknown in these overacting muscles are able to affect the number of satellite cells and/or their responsiveness compared with normal age-matched control muscles. These hypotheses are currently being tested.