944 resultados para ES-SAGD. pressure drop. heavy oil. reservoir modeling and simulation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background Helichrysum species are used extensively for stress-related ailments and as dressings for wounds normally encountered in circumcision rites, bruises, cuts and sores. It has been reported that Helichysum species are used to relief abdominal pain, heart burn, cough, cold, wounds, female sterility, menstrual pain. Results From the extracts of Helichrysum foetidum (L.) Moench, six known compounds were isolated and identified. They were 7, 4′-dihydroxy-5-methoxy-flavanone (1), 6′-methoxy-2′,4, 4′-trihydroxychalcone (2), 6′-methoxy-2′,4-dihydroxychalcone -4′-O-β-D-glucoside (3), apigenin (4), apigenin-7-O-β-D-glucoside (5), kaur-16-en-18-oic acid (6) while two known compounds 3,5,7-trihydroxy-8-methoxyflavone (12), 4,5-dicaffeoyl quinic acid (13) together with a mixture of phytosterol were isolated from the methanol extract of Helichrysum mechowianum Klatt. All the compounds were characterized by spectroscopic and mass spectrometric methods, and by comparison with literature data. Both extracts and all the isolates were screened for the protease inhibition, antibacterial and antifungal activities. In addition, the phytochemical profiles of both species were investigated by ESI-MS experiments. Conclusions These results showed that the protease inhibition assay of H. foetidum could be mainly attributed to the constituents of flavonoids glycosides (3, 5) while the compound (13) from H. mechowianum contributes to the stomach protecting effects. In addition, among the antibacterial and antifungal activities of all the isolates, compound (6) was found to possess a potent inhibitor effect against the tested microorganisms. The heterogeneity of the genus is also reflected in its phytochemical diversity. The differential bioactivities and determined constituents support the traditional use of the species. Molecular modelling was carried out by computing selected descriptors related to drug absorption, distribution, metabolism, excretion and toxicity (ADMET).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper was to evaluate the effect of retention and detention reservoirs along with the regulation in channel flow upgrade on flood for an urban watershed located at Rio Claro, SP. For this purpose, modeling and simulation techniques were applied for runoff determination and its propagation in channel. The Soil Conservation Service – SCS hydrologic model as well as Pulz and non-linear Muskingum-Cunge model were used. The software IPHS1 was applied on simulations. The results pointed out that the combination of retention increasing and detention reservoir implementation (120,000 m3, corresponding to 1.5% of the watershed area) with the streamflow upgrade (n decreasing from 0,04 to 0,02) can minimize the flood on the investigated Servidão watershed. Further, after the proposed intervention, the flood was eliminated for the investigated times of recurrence: 5, 20, 50 and 100 years. The prognostic indicated that the available area occupation had a minor effect on flow increasing due to the observed high urbanization.
Resumo:
Despite their importance in the evaluation of petroleum and gas reservoirs, measurements of self-potential data under borehole conditions (well-logging) have found only minor applications in aquifer and waste-site characterization. This can be attributed to lower signals from the diffusion fronts in near-surface environments because measurements are made long after the drilling of the well, when concentration fronts are already disappearing. Proportionally higher signals arise from streaming potentials that prevent using simple interpretation models that assume signals from diffusion only. Our laboratory experiments found that dual-source self-potential signals can be described by a simple linear model, and that contributions (from diffusion and streaming potentials) can be isolated by slightly perturbing the borehole conditions. Perturbations are applied either by changing the concentration of the borehole-filling solution or its column height. Parameters useful for formation evaluation can be estimated from data measured during perturbations, namely, pore water resistivity, pressure drop across the borehole wall, and electrokinetic coupling parameter. These are important parameters to assess, respectively, water quality, aquifer lateral continuity, and interfacial properties of permeable formations.
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the Sao Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the Sao Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the Sao Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.
Thermal design of a tray-type distillation column of an ammonia/water absorption refrigeration cycle
Resumo:
The goal of this paper is to present an analysis of a segmented weir sieve-tray distillation column for a 17.58 kW (5 TR) ammonia/water absorption refrigeration cycle. Balances of mass and energy were performed based on the method of Ponchon-Savarit, from which it was possible to determine the ideal number of trays. The analysis showed that four ideal trays were adequate for that small absorption refrigeration system having the feeding system to the column right above the second tray. It was carried out a sensitivity analysis of the main parameters. Vapor and liquid pressure drop constraint along with ammonia and water mass flow ratios defined the internal geometrical sizes of the column, such as the column diameter and height, as well as other designing parameters. Due to the lack of specific correlations, the present work was based on practical correlations used in the petrochemical and beverage production industries. The analysis also permitted to obtain the recommended values of tray spacing in order to have a compact column. The geometry of the tray turns out to be sensitive to the charge of vapor and, to a lesser extent, to the load of the liquid, being insensible to the diameter of tray holes. It was found a column efficiency of 50%. Finally, the paper presents some recommendations in order to have an optimal geometry for a compact size distillation column. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear analysis is performed for the purpose of identification of the pitch freeplay nonlinearity and its effect on the type of bifurcation of a two degree-of-freedom aeroelastic system. The databases for the identification are generated from experimental investigations of a pitch-plunge rigid airfoil supported by a nonlinear torsional spring. Experimental data and linear analysis are performed to validate the parameters of the linearized equations. Based on the periodic responses of the experimental data which included the flutter frequency and its third harmonics, the freeplay nonlinearity is approximated by a polynomial expansion up to the third order. This representation allows us to use the normal form of the Hopf bifurcation to characterize the type of instability. Based on numerical integrations, the coefficients of the polynomial expansion representing the freeplay nonlinearity are identified. Published by Elsevier Ltd.
Resumo:
The analysis of spatial relations among objects in an image is an important vision problem that involves both shape analysis and structural pattern recognition. In this paper, we propose a new approach to characterize the spatial relation along, an important feature of spatial configurations in space that has been overlooked in the literature up to now. We propose a mathematical definition of the degree to which an object A is along an object B, based on the region between A and B and a degree of elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance information is included as well. In order to cover a more wide range of potential applications, both the crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D regions or ID contours, and the definition of the alongness between them is derived from a visibility notion and from the region between the objects. However, the computational complexity of this approach leads us to the proposition of a new model to calculate the between region using the convex hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed model and the derived measures of alongness, thus showing that they agree with the common sense. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types. Results The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values. Conclusion The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis.
Resumo:
A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite's enzyme over the human glutathione reductase. Conclusion: The quantitative structure-activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.