400 resultados para EPC C1G2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Aerobic exercise training has been established as an important nonpharmacological treatment for hypertension. We investigated whether the number and function of endothelial progenitor cells (EPCs) are restored after exercise training, potentially contributing to neovascularization in hypertension. Methods: Twelve-week-old male spontaneously hypertensive rats (SHRs, n = 14) and Wistar Kyoto (WKY, n = 14) rats were assigned to four groups: SHR; trained SHR (SHR-T); WKY; and trained WKY. Exercise training consisted of 10 weeks of swimming. EPC number and function, as well as the vascular endothelial growth factor (VEGF), nitrotyrosine and nitrite concentration in peripheral blood were quantified by fluorescence-activated cell sorter analysis (CD34+/Flk1+ cells), colony-forming unit assay, ELISA and nitric oxide (NO) analyzer, respectively. Soleus capillary/fiber ratio and protein expression of VEGF and endothelial NO synthase (eNOS) by western blot were assessed. Results: Exercise training was effective in reducing blood pressure in SHR-T accompanied by resting bradycardia, an increase in exercise tolerance, peak oxygen uptake (VO2) and citrate synthase activity. In response to hypertension, the amount of peripheral blood-EPC and number of colonies were decreased in comparison with control levels. In contrast, exercise training normalized the EPC levels and function in SHR-T accompanied by an increase in VEGF and NO levels. In addition, oxidative stress levels were normalized in SHR-T. Similar results were found in the number and function of bone marrow EPC. Exercise training repaired the peripheral capillary rarefaction in hypertension by a signaling pathway VEGF/eNOS-dependent in SHR-T. Moreover, improvement in EPC was significantly related to angiogenesis. Conclusion: Our data show that exercise training repairs the impairment of EPC in hypertension, which could be associated with peripheral revascularization, suggesting a mechanism for its potential therapeutic: application in vascular diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. Methods Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. Results New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. Conclusion Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le intersezioni stradali, sono le aree individuate da tre o più tronchi stradali (archi) che convergono in uno stesso punto, nonchè dai dispositivi e dagli apprestamenti atti a consentire ed agevolare le manovre per il passaggio da un tronco all'altro. Rappresentano punti critici della rete viaria per effetto delle mutue interferenze tra le diverse correnti di traffico durante il loro attraversamento. Si acuiscono pertanto, nella loro "area di influenza", i problemi legati alla sicurezza e quelli relativi alla regolarità  ed efficienza della circolazione. Dalla numerosità  dei fattori da cui dipende la configurazione di un incrocio (numero e tipo di strade, entità  dei flussi, situazioni locali, ecc.) deriva una ancor più vasta gamma di tipologie e di schemi. La rotatoria, come particolare configurazione di intersezione a raso, è lo schema che viene considerato nel presente lavoro di tesi, sia nei suoi caratteri essenziali e generali, sia nel particolare di una intersezione che, nel Comune di Bologna, è stata realizzata in luogo dell'intersezione semaforizzata precedente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'insufficienza renale cronica (CKD) è associata ad un rischio cardiovascolare più elevato rispetto alla popolazione generale: fattori come uremia, stress ossidativo, età dialitica, infiammazione, alterazioni del metabolismo minerale e presenza di calcificazioni vascolari incidono fortemente sulla morbosità e mortalità per cause cardiovascolari nel paziente uremico. Diversi studi hanno verificato il coinvolgimento dei progenitori endoteliali (EPC) nella malattia aterosclerotica ed è stato dimostrato che esprimono osteocalcina, marcatore di calcificazione. Inoltre, nella CKD è presente una disfunzione in numero e funzionalità delle EPC. Attualmente, il ruolo delle EPC nella formazione delle calcificazioni vascolari nei pazienti in dialisi non è stato ancora chiarito. Lo scopo della tesi è quello di studiare le EPC prelevate da pazienti con CKD, al fine di determinarne numero e fenotipo. È stato anche valutato l'effetto del trattamento in vitro e in vivo con calcitriolo e paracalcitolo sulle EPC, dato il deficit di vitamina D dei pazienti con CKD: il trattamento con vitamina D sembra avere effetti positivi sul sistema cardiovascolare. Sono stati valutati: numero di EPC circolanti e la relativa espressione di osteocalcina e del recettore della vitamina D; morfologia e fenotipo EPC in vitro; effetti di calcitriolo e paracalcitolo sull’espressione di osteocalcina e sui depositi di calcio. I risultati dello studio suggeriscono che il trattamento con vitamina D abbia un effetto positivo sulle EPC, aumentando il numero di EPC circolanti e normalizzandone la morfologia. Sia calcitriolo che paracalcitolo sono in grado di ridurre notevolmente l’espressione di OC, mentre solo il paracalcitolo ha un effetto significativo sulla riduzione dei depositi di calcio in coltura. In conclusione, il trattamento con vitamina D sembra ridurre il potenziale calcifico delle EPC nell’uremia, aprendo nuove strade per la gestione del rischio cardiovascolare nei pazienti affetti da CKD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Entscheidend für die Sauerstoffversorgung im ischämischen Gewebe ist die Bildung von Blutgefäßen. Dieser Vorgang findet im erwachsenen Organismus in Form von Arteriogenese, Angiogenese und Vaskulogenese statt. Die Entdeckung, dass endotheliale Progenitorzellen (EPC) aus dem Knochenmark mobilisiert werden können, um sich im Ischämiegebiet an der Bildung neuer Kapillaren zu beteiligen, eröffnet einen vollkommen neuen therapeutischen Ansatz. In der hier vorliegenden Arbeit konnte in drei unterschiedlichen Tiermodellen, dem Matrigelmodell, dem Hinterlaufischämiemodell und dem Infarktmodell der Nacktmaus gezeigt werden, dass eine Zelltherapie mit EPC die Neovaskularisation steigert und zu einer myokardialen Funktionsverbesserung beiträgt. Der entscheidende Beitrag der Arbeit liegt jedoch in der Erforschung des Zeitraums der Wirkung der Stammzelltherapie. In allen drei Tiermodellen konnte durch ein spezifisches Abtöten der mit der viralen Thymidinkinase (TK) transduzierten EPC der positive Effekt auf die Neovaskularisation gestoppt werden. Im Herzinfarktmodell der Nacktmaus kam es sogar zu einer signifikanten Verschlechterung der Herzfunktion sowie zu einer Vergrößerung des Infarktareals. Dieser Effekt war durch Apoptose der Zellen in der dritten und vierten Woche nach Infarkt und Zellinfusion zu beobachten. Somit besitzen EPC nicht nur eine Rolle in der initialen Freisetzung von Zytokinen, sondern tragen auch langfristig zur Aufrechterhaltung des zelltherapeutischen Effektes bei. Ob hierfür allein der Mechanismus der Differenzierung verantwortlich ist, bleibt in weiteren Untersuchungen abzuklären. Denkbar wäre auch eine Beeinflussung des Remodeling über parakrine Langzeiteffekte. Im zweiten Teil der Doktorarbeit wurde versucht, das eingeschränkte zelltherapeutische Potential von Progenitorzellen von Patienten mit „Koronarer Herzkrankheit“ (KHK) und ischämischer Kardiomyopathie mit Hilfe zweier eNOSTranskriptionsverstärker, „eNOS-enhancer“, zu verbessern. Im Matrigelmodell der Maus konnten wir eine Verbesserung des Neovaskularisationspotentials von Knochenmarkszellen (BMC) von Patienten nach Präinkubation mit dem eNOS-enhancer nachweisen. Auch im Myokardinfarktmodell der Maus konnten eine Verbesserung der Herzfunktion und eine Reduktion der Infarktgröße beobachtet werden. Beim direkten Vergleich der beiden eNOS-enhancer konnte kein Unterschied gefunden werden. Zusammenfassend leistet die hier vorliegende Arbeit einen wichtigen Beitrag zum Verständnis für die Bedeutung von Progenitorzellen im Rahmen der Stammzelltherapie nach Myokardinfarkt. Ferner wurde die Möglichkeit aufgezeigt, durch gezielte Beeinflussung der Progenitorzellen ihr therapeutisches Potential signifikant zu steigern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co-culture systems, consisting of outgrowth endothelial cells (OEC) and primary osteoblasts (pOB), represent a prom¬ising instrument to mimick the natural conditions in bone repair processes and provide a new concept to develop constructs for bone replacement. Furthermore, co-culture of OEC and pOB could provide new insights into the molecular and cellular mechanisms that control essential processes during bone repair. The present study described several advantages of the co-culture of pOB and OEC for bone tissue engineering applications, including beneficial effects on the angiogenic activation of OEC, as well as on the assembly of basement membrane matrix molecules and factors involved in vessel maturation and stabilization. The ongoing angiogenic process in the co-culture system proceeded during the course of co-cultivation and correlated with the upregulation of essential angiogenic factors, such as VEGF, angiopoietins, basement membrane molecules and mural cell-specific markers. Furthermore the co-culture system appeared to maintain osteogenic differentiation capacity.rnrnAdditional treatment of co-cultures with growth factors or morphogens might accelerate and improve bone formation and furthermore could be useful for potential clinical applications. In this context, the present study highlights the central role of the morphogen, sonic hedgehog, which has been shown to affect angiogenic activation as well as osteogenic differentiation in the co-culture model of OEC and pOB. Treatment of co-cultures with sonic hedgehog resulted in an increased formation of microvessel-like structures as early as after 24 hours. This proangiogenic effect was induced by the upregulation of the proangiogenic factors, VEGF, angiopoietin1 and angiopoietin 2. In contrast to treatment with a commonly used proangiogenic agent, VEGF, Shh stimulation induced an increased expression of factors associated with vessel maturation and stabilization, mediated through the upregulation of growth factors that are strongly involved in pericyte differentiation and recruitment, including PDGF-BB and TGFbeta. In addition, Shh treatment of co-cultures also resulted in an upregulation of osteogenic differentiation markers like alkaline phosphatase, osteocalcin, osteonectin and osteopontin, as well as an increased matrix calcification. This was a result of upregulation of the osteogenic differentiation regulating factors, BMP2 and RUNX2 which could be assessed in response to Shh treatment. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After a first theoric introduction about Business Process Re-engineering (BPR), are considered in particular the possible options found in literature regarding the following three macro-elements: the methodologies, the modelling notations and the tools employed for process mapping. The theoric section is the base for the analysis of the same elements into the specific case of Rosetti Marino S.p.A., an EPC contractor, operating in the Oil&Gas industry. Rosetti Marino implemented a tool developped internally in order to satisfy its needs in the most suitable way possible and buit a Map of all business processes,navigable on the Company Intranet. Moreover it adopted a methodology based upon participation, interfunctional communication and sharing. The GIGA introduction is analysed from a structural, human resources, political and symbolic point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial progenitor cells (EPC) play a fundamental role in tissue regeneration and vascular repair. Current research suggests that EPC are more resistant to oxidative stress as compared to differentiated endothelial cells. Here we hypothesized that EPC not only possess the ability to protect themselves against oxidative stress but also confer this protection upon differentiated endothelial cells by release of paracrine factors. To test this hypothesis, HUVEC incubated with conditioned medium obtained from early EPC cultures (EPC-CM) were exposed to H2O2 to assess the accumulation of intracellular ROS, extent of apoptosis and endothelial cell functionality. Under oxidative stress conditions HUVEC treated with EPC-CM exhibited substantially lower levels of intracellular oxidative stress (0.2+/-0.02 vs. 0.4+/-0.03 relative fluorescence units, p<0.05) compared to control medium. Moreover, the incubation with EPC-CM elevated the expression level of antioxidant enzymes in HUVEC (catalase: 2.6+/-0.4; copper/zinc superoxide dismutase (Cu/ZnSOD): 1.6+/-0.1; manganese superoxide dismutase (MnSOD): 1.4+/-0.1-fold increase compared to control, all p<0.05). Furthermore, EPC-CM had the distinct potential to reverse the functional impairment of HUVEC as measured by their capability to form tubular structures in vitro. Finally, incubation of HUVEC with EPC-CM resulted in a significant reduction of apoptosis (0.34+/-0.01 vs. 1.52+/-0.12 relative fluorescence units, p<0.01) accompanied by an increased expression ratio of the anti/pro-apoptotic factors Bcl-2/Bax to 2.9+/-0.7-fold (compared to control, p<0.05). Most importantly, neutralization of selected cytokines such as VEGF, HGF, IL-8 and MMP-9 did not significantly reverse the cyto-protective effect of EPC-CM (p>0.05), suggesting that soluble factors secreted by EPC, possibly via broad synergistic actions, exert strong cyto-protective properties on differentiated endothelium through modulation of intracellular antioxidant defensive mechanisms and pro-survival signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Endothelial Progenitor Cells (EPC) support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. OBJECTIVE: The aim of this study was to investigate the role of PDGF-BB and PDGFR in EPC-mediated angiogenesis of differentiated endothelial cells. METHODS AND RESULTS: Conditioned medium from human EPC (EPC-CM) cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01). EPC-CM increased proliferation (1.39-fold; P<0.001) and migration (2.13-fold; P<0.001) of isolated human umbilical vein endothelial cells (HUVEC), as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01). The capacity of EPC-CM to modulate the PDGFR expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFR (P<0.01). EPC-CM triggered a distinct up-regulation of PDGFR (2.5±0.5; P<0.05) and its phosphorylation (3.6±0.6; P<0.05) in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. CONCLUSION: These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFR , thereby turning the PDGF/PDGFR signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The objective of this study was to examine determinants of excess coronary artery disease risk in UK South Asians, more prevalent in this population than UK Caucasians, by examining differences in risk factors, vascular function, and endothelial progenitor cells (EPCs). METHODS AND RESULTS: 24 South Asian and 25 Caucasian healthy age-matched nonsmoking men were studied. Vascular function was assessed by flow-mediated and GTN brachial artery dilatation and blood flow responses to infusion of ACh, SNP, and L-NMMA. EPC number and function were measured by flow cytometry (CD34, CD133, and KDR positive cells), and CFU/migration assays. Traditional risk factors and anthropometric measurements were similar in the groups. South Asians had higher fasting insulin levels (6.01 versus 3.62 microU/mL; P = 0.02). South Asians had lower FMD (6.9 versus 8.5%; P = 0.003), L-NMMA response (0.8 versus 1.3 mL/min/100 mL; P = 0.03), mean SNP response (9.5+/-0.6 versus 11.6+/-0.6; P = 0.02), EPC number (0.046+/-0.005% versus 0.085+/-0.009%; P = < 0.001), and CFU ability (CFU 4.29+/-1.57 versus 18.86+/-4.00; P = 0.005). EPC number was the strongest predictor of FMD. Ethnicity was the strongest predictor of EPC number. CONCLUSIONS: Healthy South Asian men are more insulin resistant, and demonstrate endothelial dysfunction and reduced EPC number and function compared with Caucasians. These abnormalities may contribute to their increased CAD risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: We investigated whether qualitative or quantitative alterations of the endothelial progenitor cell (EPC) pool predict age-related structural vessel wall changes. BACKGROUND: We have previously shown that age-related endothelial dysfunction is accompanied by qualitative rather than quantitative changes of EPCs. Animal studies suggest that impaired EPC functions lead to accelerated arterial intimal thickening. METHODS: Intima-media thickness (IMT) was measured in the common carotid artery in our previously published groups of younger (25 +/- 1 years, n = 20) and older (61 +/- 2 years, n = 20) healthy non-smoking volunteers without arterial hypertension, hypercholesterolemia, and diabetes mellitus. Endothelial progenitor cells (EPCs, KDR(+)/CD34(+) and KDR(+)/CD133(+)) were counted in peripheral blood using flow cytometry. In ex vivo expanded EPCs, the function was determined as chemotaxis to VEGF, proliferation, and survival. RESULTS: We observed thicker IMT in older as compared to younger subjects (0.68 +/- 0.03 mm Vs. 0.48 +/- 0.02 mm, P < 0.001). Importantly, there were significant inverse univariate correlations between IMT, EPC chemotaxis, and survival (r = -0.466 P < 0.05; r = -0.463, P < 0.01). No correlation was observed with numbers of circulating EPCs. Multivariate regression analysis revealed that age, mean arterial pressure and migration of EPCs were independent predictors of IMT (R (2 )= 0.58). CONCLUSION: Impaired EPC function may lead to accelerated vascular remodeling due to chronic impairment of endothelial maintenance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large number of studies utilize animal models to investigate therapeutic angiogenesis. However, the lack of a standardized experimental model leaves the comparison of different studies problematic. To establish a reference model of prolonged moderate tissue ischemia, we created unilateral hind limb ischemia in athymic rnu-rats by surgical excision of the femoral vessels. Blood flow of the limb was monitored for 60 days by laser Doppler imaging. Following a short postoperative period of substantially depressed perfusion, the animals showed a status of moderate hind limb ischemia from day 14 onwards. Thereafter, the perfusion remained at a constant level (55.5% of normal value) until the end of the observation period. Histopathological assessment of the ischemic musculature on postoperative days 28 and 60 showed essentially no inflammatory cell infiltrate or fibrosis. However, the mitochondrial activity and capillary-to-fiber ratio of the muscular tissue was reduced to 52.7% of normal, presenting with a significant weakness of the ischemic limb evidenced by a progressive decline in performance. Intramuscular injection of culture-expanded human endothelial progenitor cells (EPC) resulted in a significant increase in blood flow (82.0+/-3.5% of normal), capillary density (1.60+/-0.08/muscle fiber) and smooth muscle covered arterioles (8.0+/-0.6/high power field) in the ischemic hind limb as compared to controls (55.0+/-3.1%; 0.99+/-0.03; 5.0+/-0.2). In conclusion, chronic, moderate hind limb ischemia with consistently reduced perfusion levels persisting over a prolonged period can be established reliably in rnu athymic nude rats and is responsive to pro-angiogenic treatments such as EPC transplantation. This study provides a detailed protocol of a highly reproducible reference model to test novel therapeutic options for limb ischemia.