955 resultados para ENZYME-ACTIVITY
Resumo:
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary disease (COPD) and may involve both respiratory and locomotor (peripheral) muscles. The loss of strength and/or endurance in the former can lead to ventilatory insufficiency, whereas in the latter it limits exercise capacity and activities of daily life. Muscle dysfunction is the consequence of complex interactions between local and systemic factors, frequently coexisting in COPD patients. Pulmonary hyperinflation along with the increase in work of breathing that occur in COPD appear as the main contributing factors to respiratory muscle dysfunction. By contrast, deconditioning seems to play a key role in peripheral muscle dysfunction. However, additional systemic factors, including tobacco smoking, systemic inflammation, exercise, exacerbations, nutritional and gas exchange abnormalities, anabolic insufficiency, comorbidities and drugs, can also influence the function of both respiratory and peripheral muscles, by inducing modifications in their local microenvironment. Under all these circumstances, protein metabolism imbalance, oxidative stress, inflammatory events, as well as muscle injury may occur, determining the final structure and modulating the function of different muscle groups. Respiratory muscles show signs of injury as well as an increase in several elements involved in aerobic metabolism (proportion of type I fibers, capillary density, and aerobic enzyme activity) whereas limb muscles exhibit a loss of the same elements, injury, and a reduction in fiber size. In the present review we examine the current state of the art of the pathophysiology of muscle dysfunction in COPD.
Resumo:
RÉSUMÉ Le Grand tétras est un galliforme de montagne apparenté au faisan et au tétras lyre. Il est distribué de manière continue à travers la toundra et les montagnes de moyenne altitude en Europe de l'ouest. Toutefois, les populations d'Europe de l'ouest ont subi un déclin constant au cours des derniers siècles. Les causes de ce déclin sont probablement liées à l'activité humaine, telle .que l'élevage ou le tourisme, qui ont engendré une modification et une fragmentation de l'habitat de l'espèce. Malheureusement, les populations soumises à de forts déclins démographiques peuvent subir des effets génétiques (augmentation de la consanguinité et perte de diversité génétique) pouvant diminuer leur potentiel de reproduction et conduire irrémédiablement à l'extinction. Cette thèse présente les analyses conduites dans le but d'estimer l'impact du déclin démographique des populations de Grand tétras sur l'étendue et la distribution de leur variabilité génétique dans le Jura et dans les Pyrénées. Du fait de la législation locale protégeant les tétraonidés en général, mais également en raison de la biologie très cryptique du Grand tétras, l'ensemble des analyses de cette étude a été réalisé à partir de matériel génétique extrait des fientes (ou échantillonnage génétique non invasif). Dans la première partie de l'étude, je détaille les protocoles d'extraction. d'ADN et d'amplification par PCR modifiés à partir des protocoles classiques utilisant des échantillons conventionnels, riches en ADN. L'utilisation d'ADN fécal impose des contraintes dues à la mauvaise qualité et à la faible quantité du matériel génétique à disposition dans les fientes. Ces contraintes ont pu être partiellement contournées en réalisant des répétitions multiples du génotypage afin d'obtenir un degré de fiabilité suffisante. J'ai également analysé les causes de la dégradation de l'ADN dans les excréments. Parmi les causes les plus communes, telles que l'activité bactérienne, l'hydrolyse spontanée et la dégradation enzymatique par les DNases libres, c'est ce dernier facteur qui apparaît comme étant la cause majeure et la plus rapide responsable de la dégradation de la qualité des échantillons. La rapidité de l'action enzymatique suggère que les plans d'échantillonnages de excréments sur le terrain pourraient être optimisés en les réalisant dans des conditions climatiques froides et sèches, favorisant ainsi l'inhibition des DNases. La seconde partie de la thèse est une étude par simulation visant à déterminer la capacité du logiciel Structure à identifier les structures génétiques complexes et hiérarchiques fréquemment rencontrées dans les populations naturelles, et ce en utilisant différents types de marqueurs génétiques. Les troisième et quatrième parties de cette thèse décrivent le statut génétique des populations résiduelles du Jura et des Pyrénées à partir de l'analyse de 11 loci microsatellites. Nous n'avons pas pu mettre en évidence dans les deux populations des effets liés à la consanguinité ou à la réduction de la diversité génétique. De plus, la différenciation génétique entre les patches d'habitats favorables reste modérée et corrélée à la distance géographique, ce qui suggère que la dispersion d'individus entre les patches a été importante au moins pendant ces dernières générations. La comparaison des paramètres de la diversité génétique avec ceux d'autres populations de Grand tétras, ou d'autres espèces proches, indique que la population du Jura a retenu une proportion importante de sa diversité originelle. Ces résultats suggèrent que le déclin récent des populations a jusqu'ici eu un impact modéré sur les facteurs génétiques et que ces populations semblent avoir conservé le potentiel génétique nécessaire à leur survie à long terme. Finalement, en cinquième partie, l'analyse de l'apparentement entre les mâles qui participent à la parade sur les places de chant (leks) indique que ces derniers sont distribués en agrégats de manière non aléatoire, préférentiellement entre individus apparentés. De plus, la corrélation entre les distances génétique et géographique entre les leks est en accord avec les motifs d'isolement par la distance mis en évidence à d'autres niveaux hiérarchiques (entre patches d'habitat et populations), ainsi qu'avec les études menées sur d'autres espèces ayant choisi ce même système de reproduction. En conclusion, cette première étude basée uniquement sur de l'ADN nucléaire aviaire extrait à partir de fèces a fourni des informations nouvelles qui n'auraient pas pu être obtenues par une méthode d'observation sur le terrain ou d'échantillonnage génétique classique. Aucun oiseau n'a été dérangé ou capturé, et les résultats sont comparables à d'autres études concernant des espèces proches. Néanmoins, la taille de ces populations approche des niveaux au-dessous desquels la survie à long terme est fortement incertaine. La persistance de la diversité génétique pour les prochaines générations reste en conséquence liée à la survie des adultes et à une reprise du succès de la reproduction. ABSTRACT Capercaillie (Tetrao urogallus) is a large grouse that is continuously distributed across the tundra and the mid-high mountains of Western Europe. However, the populations in Western Europe have been showing a constant decline during the last decades. The causes for this decline are possibly related to human activities, such as cattle breeding and tourism that have both led to habitat modification and fragmentation. Unfortunately, populations that have undergone drastic demographic bottlenecks often go through genetic processes of inbreeding and loss of diversity that decrease their fitness and eventually lead to extinction. This thesis presents the investigations conducted to estimate the impact of the demographic decline of capercaillie populations on the extent and distribution of their genetic variability in the Jura and in the Pyrenees mountains. Because grouse are protected by wildlife legislation, and also because of the cryptic behaviour of capercaillie, all DNA material used in this study was extracted from faeces (non-invasive genetic sampling). In the first part of my thesis, I detail the protocols of DNA extraction and PCR amplification adapted from classical methods using conventional DNA-rich samples. The use of faecal DNA imposes specific constraints due to the low quantity and the highly degraded genetic material available. These constraints are partially overcome by performing multiple genotyping repetitions to obtain sufficient reliability. I also investigate the causes of DNA degradation in faeces. Among the main degraders, namely bacterial activity, spontaneous hydrolysis, and free-¬DNase activities, the latter was pointed out as the most important according to our experiments. These enzymes degrade DNA very rapidly, and, as a consequence, faeces sampling schemes must be planned preferably in cold and dry weather conditions, allowing for enzyme activity inhibition. The second part of the thesis is a simulation study aiming to assess the capacity of the software Structure to detect population structure in hierarchical models relevant to situations encountered in wild populations, using several genetic markers. The methods implemented in Structure appear efficient in detecting the highest hierarchical structure. The third and fourth parts of the thesis describe the population genetics status of the remaining Jura and Pyrenees populations using 11 microsatellite loci. In either of these populations, no inbreeding nor reduced genetic diversity was detected. Furthermore, the genetic differentiation between patches defined by habitat suitability remains moderate and correlated with geographical distance, suggesting that significant dispersion between patches was at work at least until the last generations. The comparison of diversity indicators with other species or other populations of capercaillie indicate that population in the Jura has retained a large part of its original genetic diversity. These results suggest that the recent decline has had so forth a moderate impact on genetic factors and that these populations might have retained the potential for long term survival, if the decline is stopped. Finally, in the fifth part, the analysis of relatedness between males participating in the reproduction parade, or lek, indicate that capercaillie males, like has been shown for some other grouse species, gather on leks among individuals that are more related than the average of the population. This pattern appears to be due to both population structure and kin-association. As a conclusion, this first study relying exclusively on nuclear DNA extracted from faeces has provided novel information that was not available through field observation or classical genetic sampling. No bird has been captured or disturbed, and the results are consistent with other studies of closely related species. However, the size of these populations is approaching thresholds below which long-term survival is unlikely. The persistence of genetic diversity for the forthcoming generations remains therefore bond to adult survival and to the increase of reproduction success.
Resumo:
Background: Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion: Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Resumo:
'Aurora-1' peaches establishes an interesting alternative as a minimally processed product, due to its characteristics like flavor, color, smell, and also because of its handling resistance. However, it has a short shelf life after a fresh-cut due to enzymatic browning and stone cavity collapse. The main purpose of this research was to test the additive with antioxidant effect to prevent browning in minimally processed 'Aurora-1' peaches. The minimal processing consists of washing, sanitizing, peelings and fruit stone extraction. After that, longitudinal cuts were made to obtain eight segments per fruit. The slices were immersed into the following treatment solutions: control (immersion in 2% ascorbic acid); 2% ascorbic acid + 2% calcium chloride; 1% sodium isoascorbate; 1% citric acid; 1% L-cysteine hydrochloride. The products were placed into rigid polystyrene trays branded MEIWA M-54, covered with 14 µm PVC film (OmnifilmTM) and kept in cold storage at 3ºC ± 2ºC and 65% RH for twelve days, and evaluated each three days. Appraised variables were appearance, soluble solids, titratable acidity, soluble carbohydrates and reducing sugars, total and soluble pectin, ascorbic acid, and peroxidase and polyphenol oxidase enzyme activity. L-cysteine gave to the minimally processed products a shelf life of twelve days, limmited by off-flavor. The treatment with ascorbic acid was efficient to maintainthe ascorbic acid content, with a shelf-life of nine days, limited by enzymatic browning.
Resumo:
The peroxisome proliferator-activated receptor (PPAR)-β/δ has emerged as a promising therapeutic target for treating dyslipidemia, including beneficial effects on HDL cholesterol (HDL-C). In the current study, we determined the effects of the PPAR-β/δ agonist GW0742 on HDL composition and the expression of liver HDL-related genes in mice and cultured human cells. The experiments were carried out in C57BL/6 wild-type, LDL receptor (LDLR)-deficient mice and PPAR-β/δ-deficient mice treated with GW0742 (10mg/kg/day) or a vehicle solution for 14 days. GW0742 upregulated liver phospholipid transfer protein (Pltp) gene expression and increased serum PLTP activity in mice. When given to wild-type mice, GW0742 significantly increased serum HDL-C and HDL phospholipids; GW0742 also raised serum potential to generate preβ-HDL formation. The GW0742-mediated effects on liver Pltp expression and serum enzyme activity were completely abolished in PPAR-β/δ-deficient mice. GW0742 also stimulated PLTP mRNA expression in mouse J774 macrophages, differentiated human THP-1 macrophages and human hepatoma Huh7. Collectively, our findings demonstrate a common transcriptional upregulation by GW0742-activated PPAR-β/δ of Pltp expression in cultured cells and in mouse liver resulting in enhanced serum PLTP activity. Our results also indicate that PPAR-β/δ activation may modulate PLTP-mediated preβ-HDL formation and macrophage cholesterol efflux.
Resumo:
NlmCategory="UNASSIGNED">Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants.
Resumo:
A drinking experiment with participants suffering from Gilbert's syndrome was performed to study the possible influence of this glucuronidation disorder on the formation of ethyl glucuronide (EtG). Gilbert's syndrome is a rather common and, in most cases, asymptomatic congenital metabolic aberration with a prevalence of about 5 %. It is characterized by a reduction of the enzyme activity of the uridine diphosphate glucuronosyltransferase (UGT) isoform 1A1 up to 80 %. One of the glucuronidation products is EtG, which is formed in the organism following exposure to ethanol. EtG is used as a short-term marker for ethyl alcohol consumption to prove abstinence in various settings. After 2 days of abstinence from ethanol and giving a void urine sample, 30 study participants drank 0.1 L of sparkling wine (9 g ethanol). 3, 6, 12, and 24 h after drinking, urine samples were collected. 3 hours after drinking, an additional blood sample was taken, in which liver enzyme activities, ethanol, hematological parameters, and bilirubin were measured. EtG and ethyl sulfate (EtS), another short-term marker of ethanol consumption, were determined in the urine samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS); creatinine was measured photometrically. In all participants, EtG and EtS were detected in concentrations showing a wide range (EtG: 3 h sample 0.5-18.43 mg/L and 6 h sample 0.67-13.8 mg/L; EtS: 3 h sample 0.87-6.87 mg/L and 6 h sample 0.29-4.48 mg/L). No evidence of impaired EtG formation was found. Thus, EtG seems to be a suitable marker for ethanol consumption even in individuals with Gilbert's syndrome.
Resumo:
Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial.
Resumo:
The response of the common carp to diets with varying amounts of digestible starch, provided either as pea meal (LP, HP, 30 and 46% peas, respectively) or as cereal (LW, HW, 30 and 46% wheat, respectively), was studied and compared with the response to a carbohydrate-free protein-rich diet (CF). Here we focused on the utilisation of dietary carbohydrates by examining the relationship between dietary starch intake, hepatic hexokinase activities, circulating insulin and muscle insulin receptor system. Plasma glucose concentration and hepatic high Km hexokinase (glucokinase, GK) activity were not affected by the content of digestible starch, but 6 h after feeding enzyme activity was higher in the fish fed carbohydrate diets. Similarly, low Km hexokinase (HK) activity was also higher in the fish 24 h after feeding. Fat gain and protein retention were significantly improved by increased digestible starch intake, especially in the HP group, which in turn, presented the highest plasma insulin levels. Glycogen stores were moderately increased by the ingestion of digestible starch. The number of insulin receptors was greater in the CF group than in fish on carbohydrates, except the HP group. Our results confirmed that the common carp uses dietary carbohydrates efficiently, especially when there are provided by peas. This efficiency might be related to the enhanced response of postprandial insulin observed in the HP group.
Resumo:
Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
The effects of pre-incubation with mercury (Hg2+) and cadmium (Cd2+) on the activities of individual glycolytic enzymes, on the flux and on internal metabolite concentrations of the upper part of glycolysis were investigated in mouse muscle extracts. In the range of metal concentrations analysed we found that only hexokinase and phosphofructokinase, the enzymes that shared the control of the flux, were inhibited by Hg2+ and Cd2+. The concentrations of the internal metabolites glucose-6-phosphate and fructose-6-phosphate did not change significantly when Hg2+ and Cd2+ were added. A mathematical model was constructed to explore the mechanisms of inhibition of Hg2+ and Cd2+ on hexokinase and phosphofructokinase. Equations derived from detailed mechanistic models for each inhibition were fitted to the experimental data. In a concentration-dependent manner these equations describe the observed inhibition of enzyme activity. Under the conditions analysed, the integral model showed that the simultaneous inhibition of hexokinase and phosphofructokinase explains the observation that the concentrations of glucose-6-phosphate and fructose-6-phosphate did not change as the heavy metals decreased the glycolytic flux.
Resumo:
Copper toxicity in soil was evaluated using biomarkers of oxidative stress (catalase enzyme activity, superoxide dismutase and lipid peroxidation) in the earthworm Eisenia foetida. Agricultural topsoils from mining areas of the Aconcagua river basin were collected. Total copper concentrations were in the range of 94-959 mg kg-1, while the exchangeable copper concentrations were in the range of 46-2225 µg kg-1. Earthworms exposed to soil with exchangeable copper concentrations above 32 µg kg-1 showed an increase in catalase activity. Parameters of antioxidant activity were more sensitive than the weight change and thus can be used as appropriate biomarkers in Eisenia foetida.
Resumo:
This study aimed to evaluate β-galactosidase immobilization. For this purpose, the ionic strength of the buffer, reaction time, amount of the immobilization support, and pH were evaluated by a central composite design. Assay 8, which consisted of 1.5 mol L-1 phosphate buffer (pH 7.5) and a reaction time of 2 h, produced the maximum yield. Eupergit® C (400 mg) was subsequently used as an immobilization support. Immobilization kinetics wereinvestigated, and a significant increase in the yield was obtained after immobilization compared with that obtained from assay 8 (22.0 U mL-1 vs. 15.6 U mL-1). The enzyme efficiency of actuation was evaluated using o-nitrophenyl-β-D-galactopyranoside and lactose, with lactose providing better results. The reuse of β-galactosidase was evaluated, and more than 50% of the initial enzyme activity was maintained after five cycles of use. Enzyme characterization revealed that immobilization improved some aspects of the thermostability of β-galactosidase.