934 resultados para ENDOTHELIAL-CELLS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the recruitment of signaling proteins that bind by way of Src-homology domain 2 interactions. Proteins that have been implicated in the negative regulation of cellular activation by ITIM-bearing receptors include the tyrosine phosphatases SHP-1 and SHP-2. Tyrosine phosphorylation of immunoreceptor tyrosine-based activatory motif (ITAM)-bearing receptors such as the collagen receptor GPVI-Fc receptor gamma-chain complex on platelets leads to activation. Increasing evidence suggests that ITIM- and ITAM-containing receptors may act antagonistically when expressed on the same cell. In this study it is demonstrated that cross-linking PECAM-1 inhibits the aggregation and secretion of platelets in response to collagen and the GPVI-selective agonist convulxin. In these experiments thrombin-mediated platelet aggregation and secretion were also reduced, albeit to a lesser degree than for collagen, suggesting that PECAM-1 function may not be restricted to the inhibition of ITAM-containing receptor pathways. PECAM-1 activation also inhibited platelet protein tyrosine phosphorylation stimulated by convulxin and thrombin; this was accompanied by inhibition of the mobilization of calcium from intracellular stores. These data suggest that PECAM-1 may play a role in the regulation of platelet function in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: The search for agents that are capable of preventing restenosis and reduce the risk of late thrombosis is of utmost importance. In this study we aim to evaluate the in vitro effects of ibuprofen on proliferation and migration of human coronary artery smooth muscle cells (HCASMCs) and on human coronary artery endothelial cells (HCAECs) migration. Methods: Cell proliferation was evaluated by direct cell counting using trypan blue exclusion. Cell migration was assessed by wound healing “scratch” assay and by time lapse video-microscopy. Protein expression was assessed by immunoblotting, and morphological changes were studied by immunocytochemistry. The involvement of the PPARγ pathway was studied with the selective agonist troglitazone, and the use of highly selective antagonists of PPARγ such as PGF2α and GW9662. Results: We demonstrate that ibuprofen inhibits proliferation and migration of HCASMCs and induces a switch in HCASMCs towards a differentiated and contractile phenotype, and that these effects are mediated through the PPARγ pathway. Importantly we also show that the effects of ibuprofen are cell type specific as it does not affect migration and proliferation of endothelial cells. Conclusions: Taken together, our results suggest that ibuprofen could be an effective drug for the development of novel drug eluting stents, which could lead reduced rates of restenosis and potentially other complications of DES stent implantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin’s substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells’ ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone’s effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tissue ischemia could contribute to the development of the tissue necrosis seen in BU lesions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rationale: Major coronary vessels derive from the proepicardium, the cellular progenitor of the epicardium, coronary endothelium, and coronary smooth muscle cells (CoSMCs). CoSMCs are delayed in their differentiation relative to coronary endothelial cells (CoEs), such that CoSMCs mature only after CoEs have assembled into tubes. The mechanisms underlying this sequential CoE/CoSMC differentiation are unknown. Retinoic acid (RA) is crucial for vascular development and the main RA-synthesizing enzyme is progressively lost from epicardially derived cells as they differentiate into blood vessel types. In parallel, myocardial vascular endothelial growth factor (VEGF) expression also decreases along coronary vessel muscularization. Objective: We hypothesized that RA and VEGF act coordinately as physiological brakes to CoSMC differentiation. Methods and Results: In vitro assays (proepicardial cultures, cocultures, and RALDH2 [retinaldehyde dehydrogenase-2]/VEGF adenoviral overexpression) and in vivo inhibition of RA synthesis show that RA and VEGF act as repressors of CoSMC differentiation, whereas VEGF biases epicardially derived cell differentiation toward the endothelial phenotype. Conclusion: Experiments support a model in which early high levels of RA and VEGF prevent CoSMC differentiation from epicardially derived cells before RA and VEGF levels decline as an extensive endothelial network is established. We suggest this physiological delay guarantees the formation of a complex, hierarchical, tree of coronary vessels. (Circ Res. 2010;107:204-216.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background/Objective: Renal ischemia-hypoxia is a leading cause of acute kidney injury (AKI). Ischemia causes extracellular matrix breakdown of the tubular basement membrane. Endostatin (ES) is the C-terminal fragment of collagen XVIII generated by proteolytic cleavage. Recent studies have demonstrated that ES expression is upregulated in ischemic kidneys. The present study aimed to characterize ES from ischemic kidneys. Methods: Ischemic renal failure was induced via 45 min of occlusion of the left renal artery and vein. After the ischemic period, blood was collected. Kidneys were harvested and used for immunohistochemical testing and protein extraction. Three-step purification was used. Soluble and immobilized purified ES were tested in cell viability and adhesion assays. Results: The soluble KES28kDa inhibited endothelial cell proliferation: 25 versus 12.5 mu g (p < 0.05); 12.5 versus 3.15 mu g (p < 0.05). Immobilization of KES28kDa supports endothelial cell survival over the control p = 0.021). Human umbilical vein endothelial cells plated on immobilized KES28kDa showed an increase in membrane ruffles and stress fibers. Conclusion: These data demonstrate the local synthesis of a 28-kDa ES-related fragment following AKI and suggest its role in endothelium survival. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation. Here, we synthesized diapocynin and studied its effect on inhibition of gp91(phox) RNA expression. We found that diapocynin strongly inhibited the expression of gp91(phox)mRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-alpha production, diapocynin had a much more pronounced effect, on both TNF-alpha and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91(phox) mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of capase-3, and increasing cell death. The over-expressaion of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. lit cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitiosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Copper is an essential trace element necessary for normal growth and development. During pregnancy, copper is transported from the maternal circulation to the fetus by mechanisms which have not been clearly elucidated. The copper uptake protein, hCTR1 is predicted to play a role in copper transport in human placental cells. This study has examined the expression and localisation of hCTR1 in human placental tissue and Jeg-3 cells. In term placental tissue the hCTR1 protein was detected as a 105 kDa protein, consistent with the size of a trimer which may represent the functional protein. A 95 kDa band, possibly representing the glycosylated protein, was also detected. hCTR1 was localised within the syncytiotrophoblast layer and the fetal vascular endothelial cells in the placental villi and interestingly was found to be localised toward the basal plasma membrane. It did not co-localise with either the Menkes or the Wilson copper transporting ATPases. Using the placental cell line Jeg-3, it was shown that the 35 kDa monomer was absent in the extracts of cells exposed to insulin, estrogen or progesterone and in cells treated with estrogen an additional 65 kDa band was detected which may correspond to a dimeric form of the protein. The 95 kDa band was not detected in the cultured cells. These results provide novel insights indicating that hormones have a role in the formation of the active hCTR1 protein. Furthermore, insulin altered the intracellular localisation of hCTR1, suggesting a previously undescribed role of this hormone in regulating copper uptake through the endocytic pathway.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background— Endothelial dysfunction because of reduced nitric oxide bioavailability is a key feature of essential hypertension. We have found that normotensive siblings of subjects with essential hypertension have impaired endothelial function accompanied by altered arginine metabolism.

Methods and Results— We have identified a novel C/T polymorphism in the 3′UTR of the principal arginine transporter, solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 gene (SLC7A1). The minor T allele significantly attenuates reporter gene expression (P<0.01) and is impaired in its capacity to form DNA-protein complexes (P<0.05). In 278 hypertensive subjects the frequency of the T allele was 13.3% compared with 7.6% in 498 normotensive subjects (P<0.001). Moreover, the overall genotype distribution observed in hypertensives differed significantly from that in normotensives (P<0.001). To complement these studies, we generated an endothelial-specific transgenic mouse overexpressing l-arginine transporter SLC7A1. The Slc7A1 transgenic mice exhibited significantly enhanced responses to the endothelium-dependent vasodilator acetylcholine (−log EC50 for wild-type versus Slc7A1 transgenic: 6.87±0.10 versus 7.56±0.13; P<0.001). This was accompanied by elevated production of nitric oxide by isolated aortic endothelial cells.

Conclusions— The present study identifies a key, functionally active polymorphism in the 3′UTR of SLC7A1. As such, this polymorphism may account for the apparent link between altered endothelial function, l-arginine, and nitric oxide metabolism and predisposition to essential hypertension.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications are the nanostructured scaffolds formed by epitope containing minimalist self-assembled peptides (SAPs), as they are bioactive on a cellular length scale, whilst presenting as an easily handled hydrogel. Here, we show that the assembly process distributes an anti-inflammatory polysaccharide, fuccoidan, localised to the nanofibers to function as an anti-inflammatory biomaterial for cancer therapy. We show that it supports healthy cells, whilst inducing apoptosis in cancerous endothelial cells, as demonstrated by the downregulation of the proinflammatory gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications as local epithelial cancer immunotherapy and drug delivery vehicles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to determine whether intracameral commercial lidocaine 2% induces alterations on the rabbit corneal endothelium. Forty white rabbits received different substances inside the anterior chamber: group (G)1, no substance; G2 and G3 received lidocaine 2% with preservative in aqueous solution; G4 and G5, lidocaine 2% with preservative in gel solution; G6 and G7, the anesthetic preservative (metilparahydroxybenzoate 0.1%); and G8 and G9, lidocaine 2% without preservative in aqueous solution. The animals from G2, 4, 6 and 8 were sacrificed after 1 h, and from G3, 5, 7 and 9 after 24 h after injection of the substance inside the anterior chamber. The corneas were clinically evaluated and assessed by transmission and scanning electron microscopy. G1, 2, 6, 7, 8 and 9 animals had very similar characteristics in clinical, ultrastructural and morphometric evaluations; the G3 and G4 animals showed discrete edema and one animal in G5 had intense corneal edema. We conclude that lidocaine 2% with preservative induces few ultrastructural alterations in the corneal endothelial cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endothelial cell function is essential to maintain corneal transparency, but unfortunately the regenerative capacity of the endothelium is limited. There are only a few reports describing the effect of age on morphologic appearance of corneal endothelial cells of dogs. Studies of normal corneal endothelial cells in humans and dogs have shown a decrease in endothelial cell density (ECD) and an increase in pleomorphism and polymegethism with advancing age. The purpose of this study was to investigate the effect of age on ECD and endothelial cell morphology in dogs. A total of 30 dogs were divided into three groups (10 dogs/group) based on age: group 1 (2-12 months old), group 2 (24-72 months old), and group 3 (84 months or older). Corneas were processed for light and scanning electron microscopy. Results showed only difference in cell density between group 1 and groups 2 and 3, showing an initial decrease in cell density as the animal matured. Whereas there was significantly greater variation in cell size within the dogs in group 3 than there was within the other two groups, suggesting that there was increased polymegethism and pleomorphism with advancing age.