939 resultados para ENDOPLASMIC-RETICULUM STRESS
Resumo:
In order to investigate cytolytic activity in the testis of Fasciola hepatica, flukes belonging to several different triclabendazole (TCBZ)-sensitive and TCBZ-resistant isolates, and wildtype flukes from field infections, were studied by light and electron microscopy with a view to identifying sites of heterophagy and macromolecular hydrolysis. At the periphery of the testis tubules in all the flukes examined, large euchromatic nuclei, each bearing a prominent nucleolus, were seen. These were invested with a thin cytoplasmic layer, extensions of which partially enveloped and probably supported the neighbouring spermatogonia. No lateral cell boundaries were identified in this tissue, possibly indicating syncytial organisation. The tissue, considered to be analogous to Sertoli cells in vertebrate testis, was identified as sustentacular tissue. It displayed cytoplasmic features consistent with protein/glycoprotein synthesis (through a granular endoplasmic reticulum-Golgi mediated mechanism) and intracellular digestion/heterophagy (through a lysosomal system). The intracytoplasmic hydrolytic activity of the sustentacular tissue probably serves to scavenge effete cells and cytoplasmic debris, to recycle useful molecules, to promote spermatozoon maturation and possibly to aid osmoregulation within the tubules. Certain protein-containing macromolecules synthesised in the sustentacular tissue may contribute to the seminiferous fluid, or have pheromonal activity. The presence of numerous mitochondria and abundant smooth endoplasmic reticulum is consistent with facilitation of inward and outward movement of micromolecular nutrients, metabolites including excretory products and water. In the sustentacular tissue of certain flukes with dysfunctional spermiogenesis, there was increased heterophagic and cytolytic scavenging activity. The cytoplasmic residual vacuoles remaining after the release of spermatids were also identified as possible sites for lysosome-mediated intracellular digestion and osmoregulation in the testis tubules of F. hepatica. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Rab GTPases of the Arabidopsis Rab-E subclass are related to mammalian Rab8 and are implicated in membrane trafficking from the Golgi to the plasma membrane. Using a yeast two-hybrid assay, Arabidopsis phosphatidylinositol-4-phosphate 5-kinase 2 (PtdIns(4)P 5-kinase 2; also known as PIP5K2), was shown to interact with all five members of the Rab-E subclass but not with other Rab subclasses residing at the Golgi or trans-Golgi network. Interactions in yeast and in vitro were strongest with RAB-E1d[Q74L] and weakest with the RAB-E1d[S29N] suggesting that PIP5K2 interacts with the GTP-bound form. PIP5K2 exhibited kinase activity towards phosphatidylinositol phosphates with a free 5-hydroxyl group, consistent with PtdIns(4)P 5-kinase activity and this activity was stimulated by Rab binding. Rab-E proteins interacted with PIP5K2 via its membrane occupancy and recognition nexus (MORN) domain which is missing from animal and fungal PtdIns(4)P 5-kinases. In plant cells, GFP:PIP5K2 accumulated at the plasma membrane and caused YFP:RAB-E1d to relocate there from its usual position at the Golgi. GFP:PIP5K2 was rapidly turned over by proteasomal activity in planta, and overexpression of YFP:PIP5K2 caused pleiotropic growth abnormalities in transgenic Arabidopsis. We propose that plant cells exhibit a novel interaction in which PIP5K2 binds GTP-bound Rab-E proteins, which may stimulate temporally or spatially localized PtdIns(4,5)P(2) production at the plasma membrane.
Resumo:
The natural isoquinoline alkaloid berberine exhibits a wide spectrum of biological activities including antitumor activity, but its mechanism of action remains to be fully elucidated. Here, we report that berberine induced apoptosis in human melanoma cells, through a process that involved mitochondria and caspase activation. Berberine-induced activation of a number of caspases, including caspases 3, 4, 7, 8, and 9. Pan-caspase inhibitor, z-VAD-fmk, and caspase-8 and caspase-9 inhibitors prevented apoptosis. Berberine also led to the generation of the p20 cleavage fragment of BAP31, involved in directing proapoptotic signals between the endoplasmic reticulum and the mitochondria. Treatment of SK-MEL-2 melanoma cells with berberine induced disruption of the mitochondrial transmembrane potential, release of cytochrome c and apoptosis-inducing factor from the mitochondria to the cytosol, generation of reactive oxygen species (ROS), and a decreased ATP/ADP ratio. Overexpression of bcl-xL by gene transfer prevented berberine-induced cell death, mitochondrial transmembrane potential loss, and cytochrome c and apoptosis-inducing factor release, but not ROS generation. N-acetyl-L-cysteine inhibited the production of ROS, but did not abrogate the berberine-induced apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) phosphorylation, by using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and reduction of B-RAF levels by silencing RNA induced cell death of SK-MEL-2 cells, and diminished the berberine concentration required to promote apoptosis. These data show that berberine-induced apoptosis in melanoma cells involves mitochondria and caspase activation, but ROS generation was not essential. Our results indicate that inhibition of B-RAF/ERK survival signaling facilitates the cell death response triggered by berberine. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
This study documents the ultrastructural findings in a case of solar retinopathy, 6 days after sungazing. A malignant melanoma of the choroid was diagnosed in a 65-year-old man. On fundoscopy, the macula was normal. The patient agreed to stare at the sun prior to enucleation. A typical solar retinopathy developed, characterised by a small, reddish, sharply circumscribed depression in the foveal area. Structural examination of the fovea and parafovea revealed a spectrum of cone and rod outer segment changes including vesiculation and fragmentation of the photoreceptor lamellae and the presence of discrete 100-120 nm whorls within the disc membranes. Many photoreceptor cells, particularly the parafoveal rods, also demonstrated mitochondrial swelling and nuclear pyknosis. Scattered retinal pigment epithelial cells in the fovea and parafovea showed a degeneration characterised by loss of plasma membrane specialisations, swelling of the smooth endoplasmic reticulum and changes in the fine structure of the lipofuscin granules. The good visual prognosis in solar retinopathy was attributed to the resistance of the foveal cone cells to photochemical damage.
Resumo:
An iris tumor developed in a 37-year-old woman who had had a bronchial carcinoid tumor resected nine years previously. The iris tumor was locally excised with a modified trabeculectomy approach. Histologic studies showed it to be a metastatic carcinoid tumor. Electron microscopy demonstrated typical dark and pale carcinoid cells with neurosecretory granules, basal bodies, and apical microvilli. The cisternae of the granular endoplasmic reticulum were disposed in a series of concentric rings encapsulating a central core of mitochondria. This unusual type of subcellular organization and specialization is probably a reflection of the slow-growing and highly differentiated nature of the iris tumor.
Resumo:
Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.
Resumo:
The effect of the microtubule inhibitors colchicine (1 x 10(-3) M) and tubulozole-C(1 x 10(-6) M) on the ultrastructure of adult Fasciola hepatica has been determined in vitro by transmission electron microscopy (TEM), using both intact flukes and tissue-slice material. With colchicine treatment, the apical membrane of the tegument became increasingly convoluted and blebbed, while accumulations of T1 secretory bodies occurred in the basal region of the syncytium, leading to progressively fewer secretory bodies in the syncytium. In the tegumental cells there were distinct accumulations of T1 secretory bodies around the Golgi complexes, which remained active for up to 12 h incubation. Tubulozole-treated flukes showed more severe effects, with initial accumulations of secretory bodies, both at the tegumental apex and base. This was followed in the later time-periods by the sloughing of the tegumental syncytium. In the underlying tegumental cells, the granular endoplasmic reticulum (GER) cisternae were swollen and disrupted, becoming concentrated around the nucleus. The Golgi complexes were dispersed to the periphery of the cells and gradually disappeared from the cytoplasm. After treatment with both drugs, the cell population in the vitelline follicles was altered, with an abnormally large proportion of stem cells and relatively few intermediate type 1 cells. The nurse cell cytoplasm became fragmented and was no longer in contact with the vitelline cells, while the shell globule clusters within the intermediate type 2 and mature cells were loosely packed. In the mature vitelline cells, 'yolk' globules and glycogen deposits became fewer than normal and lipid droplets were observed. The results are discussed in relation to the different modes of action of the two drugs and potential significance of this to anthelmintic (benzimidazole) therapy.
Resumo:
Caballeria liewi Lim, 1995, uses adhesive secretions from the head organs and posterior secretory systems to assist in locomotion and attachment. Ultrastructural investigations show that the head organs of C. liewi consist of three pairs of antero-lateral pit-like openings bearing microvilli and ducts leading from two types of uninucleated gland cells (located lateral to the pharynx), one type producing rod-like (S1) bodies with an electron-dense matrix containing less electron-dense vesicles and the second type producing oval (S2) bodies with a homogeneous electron-dense matrix. Interlinking band-like structures are observed between S1 bodies and between S2 bodies. S1 body is synthesised in the granular endoplasmic reticulum, transported to a Golgi complex to be packaged into vesicles and routed into ducts for exudation. The synthesis of the S2 body is unresolved. Haptoral secretions manifested externally as net-like structures are derived from dual electron-dense (DED) secretory body produced in the peduncular gland cells. The DED body consists of a less electron-dense oval core in a homogeneous electron-dense matrix. On exocytosis into the pyriform haptoral reservoir, DED bodies are transformed into a secretion with two types of inclusions (less electron-dense oval and electron-dense spherical inclusions) in an electron-dense matrix. The secretions are further transformed (as small, oval, electron-dense bodies) when transported to the superficial anchor grooves, and on exudation into the gill tissues, the secretions become an electron-dense matrix. Secretory bodies associated with uniciliated structures, anchor sleeves and marginal hooks are also observed.
Resumo:
The unfolded protein response (UPR) is a homeostatic mechanism to maintain endoplasmic reticulum (ER) function. The UPR is activated by various physiological conditions as well as in disease states, such as cancer. As androgens regulate secretion and development of the normal prostate and drive prostate cancer (PCa) growth, they may affect UPR pathways. Here, we show that the canonical UPR pathways are directly and divergently regulated by androgens in PCa cells, through the androgen receptor (AR), which is critical for PCa survival. AR bound to gene regulatory sites and activated the IRE1α branch, but simultaneously inhibited PERK signaling. Inhibition of the IRE1α arm profoundly reduced PCa cell growth in vitro as well as tumor formation in preclinical models of PCa in vivo. Consistently, AR and UPR gene expression were correlated in human PCa, and spliced XBP-1 expression was significantly upregulated in cancer compared with normal prostate. These data establish a genetic switch orchestrated by AR that divergently regulates the UPR pathways and suggest that targeting IRE1α signaling may have therapeutic utility in PCa.
Resumo:
Prostate cancer is the second most common cause of cancer-associated deaths in men and signalling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Androgen treatment is known to affect the expression and activity of other oncogenes including receptor tyrosine kinases (RTKs). In this study we report that AR-positive prostate cancer cell-lines express 50% higher levels of enzymes in the hexosamine biosynthesis pathway (HBP) than AR-negative prostate cell-lines. HBP produces hexosamines that are used by endoplasmic reticulum and golgi enzymes to glycosylate proteins targeted to plasma-membrane and secretion. Inhibition of O-linked glycosylation by ST045849 or N-linked glycosylation with tunicamycin decreased cell viability by 20%. In addition, tunicamycin inhibited the androgen-induced expression of AR target genes KLK3 and CaMKK2 by 50%. RTKs have been shown to enhance AR activity and we used an antibody array to identify changes in the phosphorylation status of RTKs in response to androgen stimulation. Hormone treatment increased the activity of Insulin like Growth Factor 1-Receptor (IGF-1R) ten-fold and this was associated with a concomitant increase in the N-linked glycosylation of the receptor, analyzed by lectin enrichment experiments. Glycosylation is known to be important for the processing and stability of RTKs. Inhibition of N-linked glycosylation resulted in accumulation of IGF-1R pro-receptor with altered mobility as shown by immunoprecipitation. Confocal imaging revealed that androgen induced plasma-membrane localization of IGF-1R was blocked by tunicamycin. In conclusion we have established that the glycosylation of IGF-1R is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGF-1R activation in prostate cells. Achieving similar results selectively in a clinical setting will be an important challenge in the future.
Resumo:
Vesicle and tubule transport containers move proteins and lipids from one membrane system to another. Newly forming transport containers frequently have electron-dense coats. Coats coordinate the accumulation of cargo and sculpt the membrane. Recent advances have shown that components of both COP1 and clathrin-adaptor coats share the same structure and the same motif-based cargo recognition and accessory factor recruitment mechanisms, which leads to insights on conserved aspects of coat recruitment, polymerisation and membrane deformation. These themes point to the way in which evolutionarily conserved features underpin these diverse pathways.
Resumo:
Metabolic alterations have been identified as a frequent event in cancer. This is often associated with increased flux through glycolysis, and also a secondary pathway to glycolysis, hexosamine biosynthetic pathway (HBP). HBP provides substrate for N-linked glycosylation, which occurs in the endoplasmic reticulum and the Golgi apparatus. N-linked glycosylation supports protein folding and correct sorting of proteins to plasma membrane and secretion. This process generates complex glycoforms, which can be recognized by other proteins and glycosylation of receptor tyrosine kinases (RTK) can also regulate their plasma-membrane retention time. Of special interest for experimental biologists, plants produce proteins, termed lectins, which bind with high specificity to glyco-conjugates. For the purposes of molecular biology, plant lectins can be conjugated to different moieties, such as agarose beads, which enable precipitation of specifically glycosylated proteins. In this chapter, we describe in detail how to perform pull-down experiments with commercially available lectins to identify changes in the glycosylation of RTKs.
Resumo:
Tese de doutoramento, Farmácia (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Farmácia, 2014
Resumo:
Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (∼45 and ∼55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.
Resumo:
RESUME GRAND PUBLICLe cerveau est composé de différents types cellulaires, dont les neurones et les astrocytes. Faute de moyens pour les observer, les astrocytes sont très longtemps restés dans l'ombre alors que les neurones, bénéficiant des outils ad hoc pour être stimulés et étudiés, ont fait l'objet de toutes les attentions. Le développement de l'imagerie cellulaire et des outils fluorescents ont permis d'observer ces cellules non électriquement excitables et d'obtenir des informations qui laissent penser que ces cellules sont loin d'être passives et participent activement au fonctionnement cérébral. Cette participation au fonctionnement cérébral se fait en partie par le biais de la libération de substances neuro-actives (appellées gliotransmetteurs) que les astrocytes libèrent à proximité des synapses permettant ainsi de moduler le fonctionnement neuronal. Cette libération de gliotransmetteurs est principalement causée par l'activité neuronale que les astrocytes sont capables de sentir. Néanmoins, nous savons encore peu de chose sur les propriétés précises de la libération des gliotransmetteurs. Comprendre les propriétés spatio-temporelles de cette libération est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. En utilisant des outils fluorescents récemment développés et en combinant différentes techniques d'imagerie cellulaire, nous avons pu obtenir des informations très précises sur la libération de ces gliotransmetteurs par les astrocytes. Nous avons ainsi confirmé que cette libération était un processus très rapide et qu'elle était contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit une organisation complexe de la machinerie supportant la libération des gliotransmetteurs. Cette organisation complexe semble être à la base de la libération extrêmement rapide des gliotransmetteurs. Cette rapidité de libération et cette complexité structurelle semblent indiquer que les astrocytes sont des cellules particulièrement adaptées à une communication rapide et qu'elles peuvent, au même titre que les neurones dont elles seraient les partenaires légitimes, participer à la transmission et à l'intégration de l'information cérébrale.RESUMEDe petites vésicules, les « SLMVs » ou « Synaptic Like MicroVesicles », exprimant des transporteurs vésiculaires du glutamate (VGluTs) et libérant du glutamate par exocytose régulée, ont récemment été décrites dans les astrocytes en culture et in situ. Néanmoins, nous savons peu de chose sur les propriétés précises de la sécrétion de ces SLMVs. Contrairement aux neurones, le couplage stimulussécrétion des astrocytes n'est pas basé sur l'ouverture des canaux calciques membranaires mais nécessite l'intervention de seconds messagers et la libération du calcium par le reticulum endoplasmique (RE). Comprendre les propriétés spatio-temporelles de la sécrétion astrocytaire est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. Nous avons utilisé des outils fluorescents récemment développés pour étudier le recyclage des vésicules synaptiques glutamatergiques comme les colorants styryles et la pHluorin afin de pouvoir suivre la sécrétion des SLMVs à l'échelle de la cellule mais également à l'échelle des évènements. L'utilisation combinée de l'épifluorescence et de la fluorescence à onde évanescente nous a permis d'obtenir une résolution temporelle et spatiale sans précédent. Ainsi avons-nous confirmé que la sécrétion régulée des astrocytes était un processus très rapide (de l'ordre de quelques centaines de millisecondes). Nous avons découvert que cette sécrétion est contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit des compartiments cytosoliques délimités par le RE à proximité de la membrane plasmique et contenant les SLMVs. Cette organisation semble être à la base du couplage rapide entre l'activation des GPCRs et la sécrétion. L'existence de compartiments subcellulaires indépendants permettant de contenir les messagers intracellulaires et de limiter leur diffusion semble compenser de manière efficace la nonexcitabilité électrique des astrocytes. Par ailleurs, l'existence des différents pools de vésicules recrutés séquentiellement et fusionnant selon des modalités distinctes ainsi que l'existence de mécanismes permettant le renouvellement de ces pools lors de la stimulation suggèrent que les astrocytes peuvent faire face à une stimulation soutenue de leur sécrétion. Ces données suggèrent que la libération de gliotransmetteurs par exocytose régulée n'est pas seulement une propriété des astrocytes en culture mais bien le résultat d'une forte spécialisation de ces cellules pour la sécrétion. La rapidité de cette sécrétion donne aux astrocytes toutes les compétences pour pouvoir intervenir de manière active dans la transmission et l'intégration de l'information.ABSTRACTRecently, astrocytic synaptic like microvesicles (SLMVs), that express vesicular glutamate transporters (VGluTs) and are able to release glutamate by Ca2+-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Nevertheless, little is known about the specific properties of regulated secretion in astrocytes. Important differences may exist between astrocytic and neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca2+ from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We took advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses like styryl dyes and pHluorin in order to follow exocytosis and endocytosis of SLMVs at the level of the entire cell or at the level of single event. We combined epifluorescence and total internal reflection fluorescence imaging to investigate, with unprecedented temporal and spatial resolution, the events underlying the stimulus-secretion in astrocytes. We confirmed that exo-endocytosis process in astrocytes proceeds with a time course on the millisecond time scale. We discovered that SLMVs exocytosis is controlled by local and fast Ca2+ elevations; indeed submicrometer cytosolic compartments delimited by endoplasmic reticulum (ER) tubuli reaching beneath the plasma membrane and containing SLMVs. Such complex organization seems to support the fast stimulus-secretion coupling reported here. Independent subcellular compartments formed by ER, SLMVs and plasma membrane containing intracellular messengers and limiting their diffusion seem to compensate efficiently the non-electrical excitability of astrocytes. Moreover, the existence of two pools of SLMVs which are sequentially recruited suggests a compensatory mechanisms allowing the refill of SLMVs and supporting exocytosis process over a wide range of multiple stimuli. These data suggest that regulated secretion is not only a feature of cultured astrocytes but results from a strong specialization of these cells. The rapidity of secretion demonstrates that astrocytes are able to actively participate in brain information transmission and processing.