982 resultados para Dutch belted cattle.
Resumo:
There has been growing concern about bacterial resistance to antimicrobials in the farmed livestock sector. Attention has turned to sub-optimal use of antimicrobials as a driver of resistance. Recent reviews have identified a lack of data on the pattern of antimicrobial use as an impediment to the design of measures to tackle this growing problem. This paper reports on a study that explored use of antibiotics by dairy farmers and factors influencing their decision-making around this usage. We found that respondents had either recently reduced their use of antibiotics, or planned to do so. Advice from their veterinarian was instrumental in this. Over 70% thought reducing antibiotic usage would be a good thing to do. The most influential source of information used was their own veterinarian. Some 50% were unaware of the available guidelines on use in cattle production. However, 97% thought it important to keep treatment records. The Theory of Planned Behaviour was used to identify dairy farmers’ drivers and barriers to reduce use of antibiotics. Intention to reduce usage was weakly correlated with current and past practice of antibiotic use, whilst the strongest driver was respondents’ belief that their social and advisory network would approve of them doing this. The higher the proportion of income from milk production and the greater the chance of remaining in milk production, the significantly higher the likelihood of farmers exhibiting positive intention to reduce antibiotic usage. Such farmers may be more commercially minded than others and thus more cost-conscious or, perhaps, more aware of possible future restrictions. Strong correlation was found between farmers’ perception of their social referents’ beliefs and farmers’ intent to reduce antibiotic use. Policy makers should target these social referents, especially veterinarians, with information on the benefits from, and the means to, achieving reductions in antibiotic usage. Information on sub-optimal use of antibiotics as a driver of resistance in dairy herds and in humans along with advice on best farm practice to minimise risk of disease and ensure animal welfare, complemented with data on potential cost savings from reduced antibiotic use would help improve poor practice.
Resumo:
Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec[AU1: Add manufacturer name and location.]; 260 g of oil/ kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.
Resumo:
The present article examines production and on-line processing of definite articles in Turkish-speaking sequential bilingual children acquiring English and Dutch as second languages (L2) in the UK and in the Netherlands, respectively. Thirty-nine 6–8-year-old L2 children and 48 monolingual (L1) age-matched children participated in two separate studies examining the production of definite articles in English and Dutch in conditions manipulating semantic context, that is, the anaphoric and the bridging contexts. Sensitivity to article omission was examined in the same groups of children using an on-line processing task involving article use in the same semantic contexts as in the production task. The results indicate that both L2 children and L1 controls are less accurate when definiteness is established by keeping track of the discourse referents (anaphoric) than when it is established via world knowledge (bridging). Moreover, despite variable production, all groups of children were sensitive to the omission of definite articles in the on-line comprehension task. This suggests that the errors of omission are not due to the lack of abstract syntactic representations, but could result from processes implicated in the spell-out of definite articles. The findings are in line with the idea that variable production in child L2 learners does not necessarily indicate lack of abstract representations (Haznedar and Schwartz, 1997).
Resumo:
Previous research with children learning a second language (L2) has reported errors with verb inflection and cross-linguistic variation in accuracy and error patterns. However, owing to the cross-linguistic complexity and diversity of different verbal paradigms, the cross-linguistic effects on the nature of default forms has not been directly addressed in L2 acquisition studies. In the present study, we compared accuracy and error patterns in verbal agreement inflections in L2 children acquiring Dutch and Greek, keeping the children’s L1 constant (Turkish). Results showed that inflectional defaults in Greek follow universal predictions regarding the morphological underspecification of paradigms. However, the same universal predictions do not apply to the same extent to Dutch. It is argued that phonological properties of inflected forms should be taken into account to explain cross-linguistic differences in the acquisition of inflection. By systematically comparing patterns in child L2 Dutch and Greek, this study shows how universal mechanisms and target language properties work in tandem in the acquisition of inflectional paradigms.
Resumo:
Scrotal circumference data from 47,605 Nellore young bulls, measured at around 18 mo of age (SC18), were analyzed simultaneously with 27,924 heifer pregnancy (HP) and 80,831 stayability (STAY) records to estimate their additive genetic relationships. Additionally, the possibility that economically relevant traits measured directly in females could replace SC18 as a selection criterion was verified. Heifer pregnancy was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 d. Females were exposed to sires for the first time at about 14 mo of age (between 11 and 16 mo). Stayability was defined as whether or not a cow calved every year up to 5 yr of age, when the opportunity to breed was provided. A Bayesian linear-threshold-threshold analysis via Gibbs sampler was used to estimate the variance and covariance components of the multitrait model. Heritability estimates were 0.42 +/- 0.01, 0.53 +/- 0.03, and 0.10 +/- 0.01, for SC18, HP, and STAY, respectively. The genetic correlation estimates were 0.29 +/- 0.05, 0.19 +/- 0.05, and 0.64 +/- 0.07 between SC18 and HP, SC18 and STAY, and HP and STAY, respectively. The residual correlation estimate between HP and STAY was -0.08 +/- 0.03. The heritability values indicate the existence of considerable genetic variance for SC18 and HP traits. However, genetic correlations between SC18 and the female reproductive traits analyzed in the present study can only be considered moderate. The small residual correlation between HP and STAY suggests that environmental effects common to both traits are not major. The large heritability estimate for HP and the high genetic correlation between HP and STAY obtained in the present study confirm that EPD for HP can be used to select bulls for the production of precocious, fertile, and long-lived daughters. Moreover, SC18 could be incorporated in multitrait analysis to improve the prediction accuracy for HP genetic merit of young bulls.
Resumo:
The objective of this study was to identify and quantify the influence of F (inbreeding coefficient) on weaning weight (WW), weight gain from weaning to 18 months of age (WG345), finishing visual score (precocity) at 18 months of age, muscling visual score at 18 months of age (MUS), hip height (HH), scrotal circumference at 18 months of age (SC), heifer probability of pregnancy at 14 months of age (PP14), and stayability (STAY) in Brazilian Nellore cattle. The complete pedigree included 417,552 animals born between 1984 and 2007 on 12 farms located in the states of Mato Grosso do Sul, Sao Paulo and Bahia. Following the observation of a statistically significant effect (P<0.05) of the covariates individual inbreeding coefficient (F) and maternal inbreeding coefficient, regression analysis of each trait, adjusted for all other effects, was performed as a function of the linear and quadratic effect of F and maternal F (when significant). Inbreeding negatively affected all traits studied (P<0.05), except for muscling. A quadratic effect of individual F on WW, WG345, HH and PP14, and a quadratic effect of maternal F on WG345 and HH were observed. Levels of inbreeding higher than 7-11% affected negatively growth and reproductive performance of Nellore cattle. Therefore, inbreeding should be avoided, except for purposes of genetic breeding whose main objective is the fixation of certain alleles in the population. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthases (NOS). The NOS/NO system appears to be involved in oocyte maturation, but there are few studies on gene expression and protein activity in oocytes of cattle. The present study aimed to investigate gene expression and protein activity of NOS in immature and in vitro matured oocytes of cattle. The influence of pre-maturation culture with butyrolactone I in NOS gene expression was also assessed. The following experiments were performed: (1) detection of the endothelial (eNOS) and inducible (iNOS) isoforms in the ovary by immunohistochemistry; (2) detection of eNOS and iNOS in the oocytes before and after in vitro maturation (W) by immunofluorescence; (3) eNOS and iNOS mRNA and protein in immature and in vitro matured oocytes, with or without pre-maturation, by real time PCR and Western blotting, respectively; and (4) NOS activity in immature and in vitro matured oocytes by NADPH-diaphorase. eNOS and iNOS were detected in oocytes within all follicle categories (primary, secondary and tertiary), and other compartments of the ovary and in the cytoplasm of immature and in vitro matured oocytes. Amount of mRNA for both isoforms decreased after IVM but was maintained after pre-maturation culture. The NOS protein was detected in immature (pre-mature or not) and was still detected in similar amount after pre-maturation and maturation for both isoforms. NOS activity was detected only in part of the immature oocytes. In conclusion, isoforms of NOS (eNOS and iNOS) are present in oocytes of cattle from early folliculogenesis up to maturation; in vitro maturation influences amount of mRNA and NOS activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The placenta of mammals is a structure formed by the juxtaposition of the fetal membranes and the maternal tissues. The main function of the placenta is to regulate the physiological interchange between the fetus and the mother as well as to operate as an important endocrine organ during the gestation. The placentomal fusions were characterized throughout gestation of cattle using macroscopic, histological and flow cytometry analyses. Analyzing the cell cycle phases with a flow cytometry, a balance between the G2M phase and apoptosis was observed, suggesting that the placentomal fusions do not interfere in the placentary maturation process, which is a pre-requirement for the fetal-maternal disconnection and the release of fetal membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.
Resumo:
The production of a healthy cloned calf is dependent on a multitude of successful steps, including reprogramming mediated by the oocyte, the development of a functional placenta, adequate maternal-fetal interaction, the establishment of a physiological metabolic setting and the formation of a complete set of well-differentiated cells that will eventually result in well-characterised and fully competent tissues and organs. Although the efficiency of nuclear transfer has improved significantly since the first report of a somatic cell nuclear transfer-derived animal, there are many descriptions of anomalies concerning cloned calves leading to high perinatal morbidity and mortality. The present article discusses some our experience regarding perinatal and neonatal procedures for cloned Zebu cattle (B. indicus) that has led to improved survival rates in Nellore cloned calves following the application of such `labour-intensive technology`.
Resumo:
The extensive replication of mitochondria during oogenesis and the wide variability in mitochondrial DNA ( mtDNA) copy numbers present in fully grown oocytes indicate that mtDNA amount may play an important role during early embryogenesis. Using bovine oocytes derived from follicles of different sizes to study the influence of mtDNA content on development, we showed that oocytes obtained from small follicles, known to be less competent in developing into blastocysts, contain less mtDNA than those originating from larger follicles. However, because of the high variability in copy number, a more accurate approach was examined in which parthenogenetic one-cell embryos were biopsied to measure their mtDNA content and then cultured to assess development capacity. Contrasting with previous findings, mtDNA copy number in biopsies was not different between competent and incompetent embryos, indicating that mtDNA content is not related to early developmental competence. To further examine the importance of mtDNA on development, one-cell embryos were partially depleted of their mtDNA (64% +/- 4.1% less) by centrifugation followed by the removal of the mitochondrial-enriched cytoplasmic fraction. Surprisingly, depleted embryos developed normally into blastocysts, which contained mtDNA copy numbers similar to nonmanipulated controls. Development in depleted embryos was accompanied by an increase in the expression of genes (TFAM and NRF1) controlling mtDNA replication and transcription, indicating an intrinsic ability to restore the content of mtDNA at the blastocyst stage. Therefore, we concluded that competent bovine embryos are able to regulate their mtDNA content at the blastocyst stage regardless of the copy numbers accumulated during oogenesis.
Resumo:
In this study, we describe the first survey in Thailand of Trypanosoma theileri, a widespread and prevalent parasite of cattle that is transmitted by tabanid flies. Investigation of 210 bovine blood samples of Thai cattle from six farms by hematocrit centrifuge technique (HCT) revealed 14 samples with trypanosomes morphologically compatible to T. theileri. Additional animals were positive for T. theileri by PCR based on the Cathepsin L-like sequence (TthCATL-PCR) despite negative by HCT, indicating cryptic infections. Results revealed a prevalence of 26 +/- 15% (95% CI) of T. theileri infection. Additionally, 12 samples positive for T. theileri were detected in cattle from other 11 farms. From a total of 30 blood samples positive by HCT and/or PCR from 17 farms, seven were characterized to evaluate the genetic polymorphism of T. theileri through sequence analysis of PCR-amplified CATL DNA sequences. All CATL sequences of T. theileri from Thai cattle clustered with sequences of the previously described phylogenetic lineages TthI and TthII, supporting only two major lineages of T. theileri in cattle around the world. However, 11 of the 29 CATL sequences analyzed showed to be different, disclosing an unexpectedly large polymorphic genetic repertoire, with multiple genotypes of T. theileri not previously described in other countries circulating in Thai cattle. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Trypanosoma (Megatrypanum) theileri from cattle and trypanosomes of other artiodactyls form a clade of closely related species in analyses using ribosomal sequences. Analysis of polymorphic sequences of a larger number of trypanosomes from broader geographical origins is required to evaluate the Clustering of isolates as suggested by previous studies. Here, we determined the sequences of the spliced leader (SL) genes of 21 isolates from cattle and 2 from water buffalo from distant regions of Brazil. Analysis of SL gene repeats revealed that the 5S rRNA gene is inserted within the intergenic region. Phylogeographical patterns inferred using SL sequences showed at least 5 major genotypes of T. theileri distributed in 2 strongly divergent lineages. Lineage TthI comprises genotypes IA and IB from buffalo and cattle, respectively, from the Southeast and Central regions, whereas genotype IC is restricted to cattle from the Southern region. Lineage Tth II includes cattle genotypes IIA, which is restricted to the North and Northeast, and IIB, found in the Centre, West, North and Northeast. PCR-RFLP of SL genes revealed valuable markers for genotyping T. theileri. The results of this study emphasize the genetic complexity and corroborate the geographical structuring of T. theileri genotypes found in cattle.