946 resultados para Drosophila Spermatogenesis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Salivary gland cells of Drosophila mulleri/D. arizonensis aneuploid male hybrids carrying 3 microchromosomes exhibited morphological features which indicate heterochromatinization of one of the small polytene chromosomes. The process apparently changes the chromosome surface producing a coating with a net-like structure and a strong affinity for lacto-acetic orcein. The possibility of a dosage compensatory mechanism operating to counteract the effect of the extra chromosome is discussed on the basis of previous data which indicated that the microchromosomes of these species have ribosomal cistrons and are controlled by regulatory mechanisms especially evident in hybrids. © 1981 Dr W. Junk Publishers.
Resumo:
During mitotic and meiotic divisions in Dermatobia hominis spermatogenesis, the germ cells stay interlinked by cytoplasm, bridges as a result of incomplete cytokinesis. By the end of each division, cytoplasmic bridges flow to the center of the cyst, forming a complex, called the fusoma. During meiotic prophase I, spermatocytes I present desmosome-like junctions and meiotic cytoplasmic bridges. At the beginning of spermiogenesis, the fusoma moves to the future caudal end of the cyst, and at this time the early spermatids are linked by desmosome-like junctions. Throughout spermiogensis, new and sometimes broad cytoplasmic bridges are formed among spermatids at times making them share cytoplasm. In this case the individualization of cells is assured by the presence of smooth cisternae that outline then structures The more differentiated spermatids have in addition to narrow cytoplasmic bridges, plasmic membranes junctions. By the end of spermiogenesis the excess cytoplasmic mass is eliminated leading to spermatid individualization. Desmosome-like junctions of spermatocytes I and early spermatids appear during the fusoma readjustment and segregations; on the other hand, plasmic membrane junctions appear in differentiating spermatids and are eliminated along with the cytoplasmic excess. These circumstances suggest that belt desmosome-like and plasmic membrane junctions are involved in the maintenance of the relative positions of male germ cells in D. hominis while they are inside the cysts. © 1996 Wiley-Liss, Inc.
Resumo:
We present data supporting cytogenetic observations on nucleolar dominance in hybrids between Drosophila arizonae and D. mulleri. Our approach was to compare the rDNA restriction patterns between the parental species and their hybrids. Results demonstrated that the minichromosome attached to the nucleolus in hybrid males is derived from D. arizonae.
Resumo:
The present work analyzed spermatogenesis in two species of triatomines (genus Panstrongylus) using silver-ion impregnation. The sex chromosomes of P. megistus and P. herreri had nucleolar organizing activity and became strongly impregnated during the phases of meiotic prophase I. Fragmentation of the nucleolus occurred in both species during the meiotic cycle. The nucleolar region could be observed up to diakinesis in meiotic prophase after which only nucleolar bodies and fragments were seen. Postmeiotic reactivation of rRNA synthesis occurred in these two species and was probably related to cell differentiation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.
Resumo:
The Mongolian gerbil (Meriones unguiculatus) is a small rodent native to the arid regions of Mongolia and Northeastern China. The present study provides descriptions of both the cellular associations of the seminiferous-epithelium cycle and relative frequencies of stages in the gerbil. Based on the development of the acrosomic system and the nuclear morphology changes using the PAS-H staining technique, the transformation of spermatids into spermatozoa was divided into 15 steps. The first 12 steps were used to identify 12 stages or cellular associations and the other three steps were spread among the first six stages of the cycle of the seminiferous epithelium. The relative frequencies found for stages I through XII were: 13.15; 8.06; 8.98; 6.48; 5.37; 6.71; 7.36; 7.45; 7.27; 5.83; 11.53 and 11.81, respectively. Stage I had the highest frequency while stage V proved the lowest frequency among the XII stages. The pattern of spermatogenesis is similar to those of rodents used as laboratory animals. The present description is the first for this rodent and provides the foundation for a variety of future studies of the testis in this animal. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In anuran amphibian Scinax fuscovarius, the spermatogenesis occurs in structures called seminiferous loculi, in which germ epithelium is organized in spermatocysts. Each cyst contains cells in the same stage of cytodifferentiation. Characteristics of each cellular type and their groups made the identification and differentiation of the germ lineage cells possible. In the basis of the epithelium there are the spermatogonia I, the biggest cells and always associated with the Sertoli cell. After the phase of mitotic proliferation, the cysts containing variable number of spermatogonia II are originated, quite smaller and with cellular boundaries a little distinct. After differentiation and growth in volume, the spermatocytes I appear, the nuclei of which are spherical and with different degrees of compaction of the nuclear material. Starting the meiotic process, the spermatocytes II are originated, which by means of the second meiotic division become haploid cells, the spermatids I. These two last spermatocysts are very similar. In this phase, the cells will go through a prominent process of differentiation until they form the spermatids II, which are elongated and begin to be organized in bundles supported by prominent Sertoli cells. With the process of spermiogenesis, spermatozoa appear, usually observed in compact bundles with tails turned to the lumen and their heads fitted in their support cells. In more advanced stages, the spermatozoa can be observed free in the locular lumen, ready to follow the spermatic path.
Resumo:
Up to now, investigations of expression and regulation of P transposable element have been almost exclusively carried out with the Drosophila melanogaster canonical P element. Analyzing eight species of the saltans group, we detected transposase mRNA in germline tissues of D. saltans and D. prosaltans and repressor mRNA in somatic tissues of D. saltans and D. sturtevanti. Sequencing analysis suggested that these transcripts might belong to the canonical subfamily and that they can be transpositionally active only in D. saltans. dN and dS values of Adh and the P element suggested that the sequences found in D. saltans and D. prosaltans might have been present in the ancestor of the saltans subgroup and that the sequence found in D. sturtevanti might have been horizontally transferred from D. saltans.