990 resultados para Double Electron-Electron Resonance (DEER)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Comparisons between experimentally measured time-dependent electron energy distribution functions and optical emission intensities are reported for low-frequency (100 and 400 kHz) radio-frequency driven discharges in argon. The electron energy distribution functions were measured with a time-resolved Langmuir probe system. Time-resolved optical emissions of argon resonance lines at 687.1 and 750.4 nm were determined by photon-counting methods. Known ground-state and metastable-state excitation cross sections were used along with the measured electron energy distribution functions to calculate the time dependence of the optical emission intensity. It was found that a calculation using only the ground-state cross sections gave the best agreement with the time dependence of the measured optical emission. Time-dependent electron density, electron temperature, and plasma potential measurements are also reported.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The electronic redistribution of an ion or atom induced by a sudden recoil of the nucleus occurring during the emission or capture of a neutral particle is theoretically investigated. For one-electron systems, analytical expressions are derived for the electronic transition probabilities to bound and continuum states. The quality of a B-spline basis set approach is evaluated from a detailed comparison with the analytical results. This numerical approach is then used Io study the dynamics of two-electron systems (neutral He and Ne ) using correlated wavefunctions for both the target and daughter ions. The total transition probabilities to discrete states, autoionizing states and direct single- and double-ionization probabilities are calculated from the pseudospectra. Sum rules for transition probabilities involving an initial bound state and a complete final series are discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present data on emission of K-shell radiation from Ti foils irradiated with subpicosecond pulses of second harmonic radiation (527 nm) from the TARANIS laser system at intensities of up to 1018 Wcm-2. The data are used to demonstrate that a resonance absorption type mechanism is responsible for absorption of the laser light and to estimate fast electron temperatures of 30–60 keV that are in broad agreement with expectation from models of absorption for a steep density gradient. Data taken with resin-backed targets are used to demonstrate clear evidence of electron refluxing even at the modest fast electron temperatures inferred.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Hemispherical electron plasma waves generated from ultraintense laser interacting with a solid target having a subcritical preplasma is studied using particle-in-cell simulation. As the laser pulse propagates inside the preplasma, it becomes self-focused due to the response of the plasma electrons to the ponderomotive force. The electrons are mainly heated via betatron resonance absorption and their thermal energy can become higher than the ponderomotive energy. The hot electrons easily penetrate through the thin solid target and appear behind it as periodic hemispherical shell-like layers separated by the laser wavelength.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons. 

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10(19) W/cm(2). High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.

Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In open-shell atoms and ions, processes such as photoionization, combination (Raman) scattering, electron scattering, and recombination are often mediated by many-electron compound resonances. We show that their interference (neglected in the independent-resonance approximation) leads to a coherent contribution, which determines the energy-averaged total cross sections of electron- and photon-induced reactions obtained using the optical theorem. In contrast, the partial cross sections (e.g., electron recombination or photon Raman scattering) are dominated by the stochastic contributions. Thus, the optical theorem provides a link between the stochastic and coherent contributions of the compound resonances. Similar conclusions are valid for reactions via compound states in molecules and nuclei.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Plans to employ tungsten in the divertor region of the International Thermonuclear Experimental Reactor require radiative and collisional data for modelling x-ray emissions of highly ionized stages of tungsten. In an earlier paper, we reported on the results of fully relativistic R -matrix calculations for W 46+ that included the effects of radiation damping on the resonance contributions. In this paper, we present the results of similar fully relativistic, radiatively damped R -matrix calculations for W 44+ and W 45+ . Radiation damping is found to be small for W 45+ , but is appreciable for many of the excitations from the ground and metastable levels of W 44+ . Rates from the present calculations will be combined with those from the calculations for W 46+ and employed for collisional-radiative modelling for these ions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Electron-impact excitation data for He-like ions are of significant importance for diagnostic applications to both laboratory and astrophysical plasmas. Here we report on the first fully relativistic R -matrix calculations with radiation damping for the He-like ions Fe 24+ and Kr 34+ . Effective collision strengths for these two ions have been determined with and without damping over a wide temperature range for all transitions between the 49 levels through n = 5. We find that damping has a pronounced effect on the effective collision strengths for excitation to some of the low-lying levels, but its effect on excitation to the vast majority of levels is small. At the energy of a resonance peak, we also investigate the effect of radiation damping on the angular distribution of scattered electrons. Finally, we compare our results for Fe 24+ with an earlier intermediate coupling frame transformation R -matrix calculation with radiation damping by Whiteford et al ( J. Phys. B: At. Mol. Opt. Phys. 34 3179) and find good agreement, especially for excitation to the lower levels.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this study we calculate the electron-impact uncertainties in atomic data for direct ionization and recombination and investigate the role of these uncertainties on spectral diagnostics. We outline a systematic approach to assigning meaningful uncertainties that vary with electron temperature. Once these uncertainty parameters have been evaluated, we can then calculate the uncertainties on key diagnostics through a Monte Carlo routine, using the Astrophysical Emission Code (APEC) [Smith et al. 2001]. We incorporate these uncertainties into well known temperature diagnostics, such as the Lyman alpha versus resonance line ratio and the G ratio. We compare these calculations to a study performed by [Testa et al. 2004], where significant discrepancies in the two diagnostic ratios were observed. We conclude that while the atomic physics uncertainties play a noticeable role in the discrepancies observed by Testa, they do not explain all of them. This indicates that there is another physical process occurring in the system that is not being taken into account. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.