890 resultados para Distributed artificial intelligence - multiagent systems
Resumo:
Planning is an essential process in teams of multiple agents pursuing a common goal. When the effects of actions undertaken by agents are uncertain, evaluating the potential risk of such actions alongside their utility might lead to more rational decisions upon planning. This challenge has been recently tackled for single agent settings, yet domains with multiple agents that present diverse viewpoints towards risk still necessitate comprehensive decision making mechanisms that balance the utility and risk of actions. In this work, we propose a novel collaborative multi-agent planning framework that integrates (i) a team-level online planner under uncertainty that extends the classical UCT approximate algorithm, and (ii) a preference modeling and multicriteria group decision making approach that allows agents to find accepted and rational solutions for planning problems, predicated on the attitude each agent adopts towards risk. When utilised in risk-pervaded scenarios, the proposed framework can reduce the cost of reaching the common goal sought and increase effectiveness, before making collective decisions by appropriately balancing risk and utility of actions.
Resumo:
Abstract not available
Resumo:
This work presents a study about a the Baars-Franklin architecture, which defines a model of computational consciousness, and use it in a mobile robot navigation task. The insertion of mobile robots in dynamic environments carries a high complexity in navigation tasks, in order to deal with the constant environment changes, it is essential that the robot can adapt to this dynamism. The approach utilized in this work is to make the execution of these tasks closer to how human beings react to the same conditions by means of a model of computational consci-ousness. The LIDA architecture (Learning Intelligent Distribution Agent) is a cognitive system that seeks tomodel some of the human cognitive aspects, from low-level perceptions to decision making, as well as attention mechanism and episodic memory. In the present work, a computa-tional implementation of the LIDA architecture was evaluated by means of a case study, aiming to evaluate the capabilities of a cognitive approach to navigation of a mobile robot in dynamic and unknown environments, using experiments both with virtual environments (simulation) and a real robot in a realistic environment. This study concluded that it is possible to obtain benefits by using conscious cognitive models in mobile robot navigation tasks, presenting the positive and negative aspects of this approach.
Resumo:
In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph.
Resumo:
Robotics is an emergent branch of engineering that involves the conception, manufacture, and control of robots. It is a multidisciplinary field that combines electronics, design, computer science, artificial intelligence, mechanics and nanotechnology. Its evolution results in machines that are able to perform tasks with some level of complexity. Multi-agent systems is a researching topic within robotics, thus they allow the solving of higher complexity problems, through the execution of simple routines. Robotic soccer allows the study and development of robotics and multiagent systems, as the agents have to work together as a team, having in consideration most problems found in our quotidian, as for example adaptation to a highly dynamic environment as it is the one of a soccer game. CAMBADA is the robotic soccer team belonging to the group of research IRIS from IEETA, composed by teachers, researchers and students of the University of Aveiro, which annually has as main objective the participation in the RoboCup, in the Middle Size League. The purpose of this work is to improve the coordination in set pieces situations. This thesis introduces a new behavior and the adaptation of the already existing ones in the offensive situation, as well as the proposal of a new positioning method in defensive situations. The developed work was incorporated within the competition software of the robots. Which allows the presentation, in this dissertation, of the experimental results obtained, through simulation software as well as through the physical robots on the laboratory.
Resumo:
This paper presents a generic architecture for proof planning systems in terms of an interaction between a customisable proof module and search module. These refer to both global and local information contained in reasoning states.
Resumo:
Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.
Resumo:
This paper explores the role of information and communication technologies in managing risk and early discharge patients, and suggests innovative actions in the area of E-Health services. Treatments of chronic illnesses, or treatments of special needs such as cardiovascular diseases, are conducted in long-stay hospitals, and in some cases, in the homes of patients with a follow-up from primary care centre. The evolution of this model is following a clear trend: trying to reduce the time and the number of visits by patients to health centres and derive tasks, so far as possible, toward outpatient care. Also the number of Early Discharge Patients (EDP) is growing, thus permiting a saving in the resources of the care center. The adequacy of agent and mobile technologies is assessed in light of the particular requirements of health care applications. A software system architecture is outlined and discussed. The major contributions are: first, the conceptualization of multiple mobile and desktop devices as part of a single distributed computing system where software agents are being executed and interact from their remote locations. Second, the use of distributed decision making in multiagent systems, as a means to integrate remote evidence and knowledge obtained from data that is being collected and/or processed by distributed devices. The system will be applied to patients with cardiovascular or Chronic Obstructive Pulmonary Diseases (COPD) as well as to ambulatory surgery patients. The proposed system will allow to transmit the patient's location and some information about his/her illness to the hospital or care centre