439 resultados para Dirac semimetal
Resumo:
We show that the conditions which originate the spin and pseudospin symmetries in the Dirac equation are the same that produce equivalent energy spectra of relativistic spin-1/2 and spin-0 particles in the presence of vector and scalar potentials. The conclusions do not depend on the particular shapes of the potentials and can be important in different fields of physics. When both scalar and vector potentials are spherical, these conditions for isospectrality imply that the spin-orbit and Darwin terms of either the upper component or the lower component of the Dirac spinor vanish, making it equivalent, as far as energy is concerned, to a spin-0 state. In this case, besides energy, a scalar particle will also have the same orbital angular momentum as the (conserved) orbital angular momentum of either the upper or lower component of the corresponding spin-1/2 particle. We point out a few possible applications of this result. © 2007 The American Physical Society.
Resumo:
We study the Schwinger Model on the null-plane using the Dirac method for constrained systems. The fermion field is analyzed using the natural null-plane projections coming from the γ-algebra and it is shown that the fermionic sector of the Schwinger Model has only second class constraints. However, the first class constraints are exclusively of the bosonic sector. Finally, we establish the graded Lie algebra between the dynamical variables, via generalized Dirac bracket in the null-plane gauge, which is consistent with every constraint of the theory. © World Scientific Publishing Company.
Resumo:
We consider some existing relativistic models for the nucleon structure functions, relying on statistical approaches instead of perturbative ones. These models are based on the Fermi-Dirac distribution for the confined quarks, where a density of energy levels is obtained from an effective confining potential. In this context, it is presented some results obtained with a recent statistical quark model for the sea-quark asymmetry in the nucleon. It is shown, within this model, that experimental available observables, such as the ratio and difference between proton and neutron structure functions, are quite well reproduced with just three parameters: two chemical potentials used to reproduce the valence up and down quark numbers in the nucleon, and a temperature that is being used to reproduce the Gottfried sum rule violation. © 2010 American Institute of Physics.
Resumo:
We present a nonperturbative quantization of the two-dimensional massless gauged Thirring model by using the path-integral approach. First, we will study the constraint structure of model via the Dirac's formalism and by using the Faddeev-Senjanovic method we calculate the vacuum-vacuum transition amplitude in a Rξ-gauge, then we compute the Green's functions in a nonperturbative framework. © 2010 American Institute of Physics.
Resumo:
Following the Dirac's technique for constrained systems we performed a detailed analysis of the constraint structure of Podolsky's electromagnetic theory on the null-plane coordinates. The null plane gauge condition was extended to second order theories and appropriate boundary conditions were imposed to guarantee the uniqueness of the inverse of the constraints matrix of the system. Finally, we determined the generalized Dirac brackets of the independent dynamical variables. © 2010 American Institute of Physics.
Resumo:
We provide a simple method for writing the Dirac-Born-Infeld equations of a Dp-brane in an arbitrary static background whose metric depends only on the holographic radial coordinate z. Using this method we revisit the Karch-O'Bannon procedure to calculate the dc conductivity in the presence of constant electric and magnetic fields for backgrounds where the boundary is four- or three-dimensional and satisfies homogeneity and isotropy. We find a frame-independent expression for the dc conductivity tensor. For particular backgrounds we recover previous results on holographic metals and strange metals. © 2013 American Physical Society.
Resumo:
Missing bound-state solutions for fermions in the background of a Cornell potential consisting of a mixed scalar-vector-pseudoscalar coupling is examined. Charge-conjugation operation, degeneracy and localization are discussed. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)