1000 resultados para Dimensional
Resumo:
An alternative pulse scheme which simplifies and improves the recently proposed P.E.COSY experiment is suggested for the retention of connected or unconnected transitions in a coupled spin system. An important feature of the proposed pulse scheme is the improved phase characteristics of the diagonal peaks. A comparison of various experiments designed for this purpose, namely COSY-45, E.COSY, P.E.COSY and the present scheme (A.E.COSY), is also presented. The suppression of unconnected transitions and the measurement of scalar coupling constants and their relative signs are illustrated from A.E.COSY spectra of 2,3-dibromopropionic acid and 2-(2-thienyl)pyridine.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter ? which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when ? is small, whereas the effect of the dissipation parameter is more pronounced when ? is comparatively large.
Resumo:
The unsteady laminar incompressible mixed convection flow over a two-dimensional body (cylinder) and an axisymmetric body (sphere) has been studied when the buboyancy forces arise from both thermal and mass diffusion and the unsteadiness in the flow field is introduced by the time dependent free stream velocity. The nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The results indicate that for the thermally assisting flow the local skin friction, heat transfer and mass diffusion are enhanced when the buoyancy force from mass diffusion assists the thermal buoyancy force. But this trend is opposite for the thermally opposing flow. The point of zero skin friction moves upstream due to unsteadiness. No singularity is observed at the point of zero skin friction for unsteady flow unlike steady flow. The flow reversal is observed after a certain instant of time. The velocity overshoot occurs for assisting flows.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.
Resumo:
The use of electroacoustic analogies suggests that a source of acoustical energy (such as an engine, compressor, blower, turbine, loudspeaker, etc.) can be characterized by an acoustic source pressure ps and internal source impedance Zs, analogous to the open-circuit voltage and internal impedance of an electrical source. The present paper shows analytically that the source characteristics evaluated by means of the indirect methods are independent of the loads selected; that is, the evaluated values of ps and Zs are unique, and that the results of the different methods (including the direct method) are identical. In addition, general relations have been derived here for the transfer of source characteristics from one station to another station across one or more acoustical elements, and also for combining several sources into a single equivalent source. Finally, all the conclusions are extended to the case of a uniformly moving medium, incorporating the convective as well as dissipative effects of the mean flow.
Resumo:
The hazards associated with major accident hazard (MAN) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identification and quantification of these hazards related to chemical industries. Fault tree analysis (FTA) is an established technique in hazard identification. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. This paper outlines the estimation of the probability of release of chlorine from storage and filling facility of chlor-alkali industry using FTA. An attempt has also been made to arrive at the probability of chlorine release using expert elicitation and proven fuzzy logic technique for Indian conditions. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two-dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor involved in expert elicitation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point for both cold and hot walls has been studied for the case when the velocity of the incident stream varies arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for two particular unsteady free-stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. The results indicate that the variation of the density-viscosity product across the boundary layer, the wall temperature and the nature of stagnation point significantly affect the skin friction and heat transfer.
Resumo:
The use of appropriate finite elements in different regions of a stressed solid can be expected to be economical in computing its stress response. This concept is exploited here in studying stresses near free edges in laminated coupons. The well known free edge problem of [0/90], symmetric laminate is considered to illustrate the application of the concept. The laminate is modelled as a combination of three distinct regions. Quasi-three-dimensional eight-noded quadrilateral isoparametric elements (Q3D8) are used at and near the free edge of the laminate and two-noded line elements (Q3D2) are used in the region away from the free edge. A transition element (Q3DT) provides a smooth inter-phase zone between the two regions. Significant reduction in the problem size and hence in the computational time and cost have been achieved at almost no loss of accuracy.
Resumo:
We apply the method of multiple scales (MMS) to a well-known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the timescale of typical cutting tool oscillations. The MMS up to second order, recently developed for such systems, is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than the first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy in that plotted solutions of moderate amplitudes are visually near-indistinguishable. The advantages of the present analysis are that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space; lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS; the strong sensitivity of the slow modulation dynamics to small changes in parameter values, peculiar to such systems with large delays, is seen clearly; and though certain parameters are treated as small (or, reciprocally, large), the analysis is not restricted to infinitesimal distances from the Hopf bifurcation.
Resumo:
It is well known that in the time-domain acquisition of NMR data, signal-to-noise (S/N) improves as the square root of the number of transients accumulated. However, the amplitude of the measured signal varies during the time of detection, having a functional form dependent on the coherence detected. Matching the time spent signal averaging to the expected amplitude of the signal observed should also improve the detected signal-to-noise. Following this reasoning, Barna et al. (J Magn. Reson.75, 384, 1987) demonstrated the utility of exponential sampling in one- and two-dimensional NMR, using maximum-entropy methods to analyze the data. It is proposed here that for two-dimensional experiments the exponential sampling be replaced by exponential averaging. The data thus collected can be analyzed by standard fast-Fourier-transform routines. We demonstrate the utility of exponential averaging in 2D NOESY spectra of the protein ubiquitin, in which an enhanced SIN is observed. It is also shown that the method acquires delayed double-quantum-filtered COSY without phase distortion.
Resumo:
Details of an efficient optimal closed-loop guidance algorithm for a three-dimensional launch are presented with simulation results. Two types of orbital injections, with either true anomaly or argument of perigee being free at injection, are considered. The resulting steering-angle profile under the assumption of uniform gravity lies in a canted plane which transforms a three-dimensional problem into an equivalent two-dimensional one. Effects of thrust are estimated using a series in a recursive way. Encke's method is used to predict the trajectory during powered flight and then to compute the changes due to actual gravity using two gravity-related vectors. Guidance parameters are evaluated using the linear differential correction method. Optimality of the algorithm is tested against a standard ground-based trajectory optimization package. The performance of the algorithm is tested for accuracy, robustness, and efficiency for a sun-synchronous mission involving guidance for a multistage vehicle that requires large pitch and yaw maneuver. To demonstrate applicability of the algorithm to a range of missions, injection into a geostationary transfer orbit is also considered. The performance of the present algorithm is found to be much better than others.