895 resultados para Dignity of human being


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of 3D modeling of Human Face in Face Recognition systems, User Interfaces, Graphics, Gaming and the like has made it an area of active study. Majority of the 3D sensors rely on color coded light projection for 3D estimation. Such systems fail to generate any response in regions covered by Facial Hair (like beard, mustache), and hence generate holes in the model which have to be filled manually later on. We propose the use of wavelet transform based analysis to extract the 3D model of Human Faces from a sinusoidal white light fringe projected image. Our method requires only a single image as input. The method is robust to texture variations on the face due to space-frequency localization property of the wavelet transform. It can generate models to pixel level refinement as the phase is estimated for each pixel by a continuous wavelet transform. In cases of sparse Facial Hair, the shape distortions due to hairs can be filtered out, yielding an estimate for the underlying face. We use a low-pass filtering approach to estimate the face texture from the same image. We demonstrate the method on several Human Faces both with and without Facial Hairs. Unseen views of the face are generated by texture mapping on different rotations of the obtained 3D structure. To the best of our knowledge, this is the first attempt to estimate 3D for Human Faces in presence of Facial hair structures like beard and mustache without generating holes in those areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an epidemiological study of symptomatic human rotaviruses in Mysore, India during 1993 and 1994, isolates MP409 and MP480 were isolated from two children suffering from severe, acute dehydrating diarrhea. Both isolates exhibited 'long' RNA pattern and subgroup I specificity suggesting the likelihood of their animal origin. Both isolates did not react with monoclonal antibodies (MAbs) specific for serotypes G1 to G6 as well as CIO. To determine the genetic origin of these isolates, complete nucleotide sequences of genes encoding the outer capsid proteins VP4 and VP7, nonstructural proteins NSP1 and NSP3 and viral enterotoxin protein NSP4 from MP409 and partial sequences of genes from MP480 were determined. Comparison of the 5' and 3' terminal sequences of 250 nucleotides revealed complete identity of the gene sequences in both strains suggesting that MP409 and MP480 are two different isolates of a single strain. Comparison of the nucleotide and deduced amino acid sequences of VP4, VP7, NSP1 and NSP3 of MP409 with published sequences of strains belonging to different serotypes revealed that both outer capsid proteins VP4 and VP7 and NSP1 are highly related to the respective proteins from the P6[1], G8 type bovine rotavirus A5 isolated from a calf with diarrhoea in Thailand and that the NSP3 is highly homologous to that of bovine rotaviruses. The NSP 1 protein showed greatest sequence identity with NSP4s belonging to the KUN genetic group to which NSP4s from human G2 type strains and bovine rotaviruses belong. MP409 and MP480 likely signify interspecies transmission of P6[1], G8 type strains from cattle to humans and represent the first P6[1] type rotaviruses isolated in humans. These and our previous studies on the asymptomatic neonatal strain I321 are of evolutionary and epidemiological significance in the context of close association of majority of the Indian population with cattle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A human primary lung carcinoma cell line (HPL-R1) established from the tumor biopsy of a lung cancer patient, lacking in cytochrome P1-450 [aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH)], was cloned and used to obtain variants deficient in the expression of thymidine-kinase via treatment with 5-bromo-2'-deoxyuridine, and selection for drug resistance phenotype. The variant cell line, precharacterized for thymidine kinase negative phenotype, was transfected with the thymidine kinase gene bearing p R-tk and px1-tk plasmids. Transfections from both the plasmids, demonstrated a frequency of 5.5 X 10(-5). The transfectants showed a 76-100% retention of the transferred phenotype. These data suggest that transfection in variant human cells can approach significant levels of stability observed with rodent cell recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human papillomaviruses (HPVs) are the causal agents of cervical cancer, which is the second most common cancer among women worldwide. Cellular transformation and carcinogenesis depend on the activities of viral E5, E6 and E7 proteins. Alterations in cell-cell contacts and in communication between epithelial cells take place during cervical carcinogenesis, leading to changes in cell morphology, increased cell motility and finally invasion. The aim of this thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 protein on the expression of host cell messenger RNAs (mRNAs) and microRNAs by applying microarray technology. The results showed that the HPV-16 E5 protein alters several cellular pathways involved in cellular adhesion, motility and proliferation as well as in the extracellular matrix. The E5 protein was observed to enhance wound healing of epithelial cell monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations in the expression of cellular microRNAs and their target genes seem to favour increased proliferation and tumorigenesis. E5 was also shown to affect the expression of adherens junction proteins in HaCaT epithelial keratinocytes. In addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, revealed that when activated, it localizes to adherens junctions. The results suggest that ezrin distribution to forming adherens junctions is due to Rac1 activity in epithelial cells. These studies reveal for the first time the holistic effects of HPV-16 E5 protein in promoting precancerous events in epithelial cells. The results contribute to identifyinging novel markers for cervical precancerous stages and to predicting disease behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies raised against human serum retinol-binding protein (hRBP) were used as probes for the study of the antigenic determinants of hRBP and those shared with the same protein from other species. The antibodies could be classified into four distinct groups and react with the homologous proteins from the rat as well as the rabbit sera. Three of these antibodies recognize sequential or continuous epitopes while the remaining antibody is directed against a discontinuous or conformational epitope. By chemical cleavage with cyanogen bromide, the domains recognized by the monoclonal antibodies could be delineated. By solid-phase synthetic approach, the core sequences recognized by two of these monoclonal antibodies were identified to amino acid sequences 45–51 and 128–131 of the primary amino acid sequence of hRBP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of aromatase, a key enzyme in the biosynthesis of oestradiol-17 beta, by the addition of 1,4,6-androstatrien-3,17-dione resulted in a significant increase in the levels of immunoreactive human chorionic gonadotrophin (hCG) in the medium and tissue. This increase was partially reversed by the simultaneous addition of oestradiol-17 beta. These effects on the levels of immunoreactive hCG were also reflected by the increased levels of mRNA specific for the alpha and beta subunits of hCG following the addition of the aromatase inhibitor. However, addition of tamoxifen resulted in a drastic decrease in the levels of both the messages. Based on these results, it is suggested that the synthesis of hCG is negatively modulated by oestradiol-17 beta in the human placenta.