927 resultados para Digestive diseases
Resumo:
Background: Habitual consumption of diets with a high glycemic index (GI) and a high glycemic load (GL) may influence cancer risk via hyperinsulinemia and the insulin-like growth factor axis.
Objective: The objective was to conduct a systematic review to assess the association between GI, GL, and risk of digestive tract cancers.
Design: Medline and Embase were searched for relevant publications from inception to July 2008. When possible, adjusted results from a comparison of cancer risk of the highest compared with the lowest category of GI and GL intake were combined by using random-effects meta-analyses.
Results: Cohort and case-control studies that examined the risk between GI or GL intake and colorectal cancer (n = 12) and adenomas (n = 2), pancreatic cancer (n = 6), gastric cancer (n = 2), and squamous-cell esophageal carcinoma (n = 1) were retrieved. Most case-control studies observed positive associations between GI and GL intake and these cancers. However, pooled cohort study results showed no associations between colorectal cancer risk and GI intake [relative risk (RR): 1.04; 95% CI: 0.92, 1.12; n = 7 studies] or GL intake (RR: 1.06; 95% CI: 0.95, 1.17; n = 8 studies). Furthermore, no significant associations were observed in meta-analyses of cohort study results of colorectal cancer subsites and GI and GL intake. Similarly, no significant associations emerged between pancreatic cancer risk and GI intake (RR: 0.99; 95% CI: 0.83, 1.19; n = 5 studies) or GL intake (RR: 1.01; 95% CI: 0.86, 1.19; n = 6 studies) in combined cohort studies.
Conclusions: The findings from our meta-analyses indicate that GI and GL intakes are not associated with risk of colorectal or pancreatic cancers. There were insufficient data available regarding other digestive tract cancers to make any conclusions about GI or GL intake and risk.
Resumo:
Cholecystokinin receptor-2 (CCK2R) is a G protein receptor that regulates a number of physiological functions. Activation of CCK2R and/or expression of a constitutively active CCK2R variant may contribute to human diseases, including digestive cancers. Search for antagonists of the CCK2R has been an important challenge during the last few years, leading to discovery of a set of chemically distinct compounds. However, several early-discovered antagonists turned out to be partial agonists. In this context, we carried out pharmacological characterization of six CCK2R antagonists using COS-7 cells expressing the human CCK2R or a CCK2R mutant having a robust constitutive activity on inositol phosphates production, and we investigated the molecular mechanisms which, at a CCK2R binding site, account for these features. Results indicated that three compounds, 3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3- yl)-N'-(3-methylphenyl)urea (L365,260), 4-{[2-[[3-(lH-indol-3-yl)-2- methyl-1-oxo-2-[[[1.7.7-trimethyl-bicyclo[2.2.1]hept-2-yl)-oxy]carbonyl]amino] propyl]amino]-1-phenylethyl]amino-4-oxo-[lS-la.2[S*(S*)]4a]} -butanoate N-methyl-D-glucamine (PD135, 158), and (R)-1-naphthalenepropanoic acid, b-[2-[[2-(8-azaspiro-[4.5]dec-8-ylcarbonyl)-4,6-dimethylphenyl]amino]-2- oxoethyl] (CR2945), were partial agonists; one molecule, 1-[(R)-2,3-dihydro-1- (2,3-dihydro-1-(2-methylphenacyl)-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl] -3-(3-methylphenyl)urea (YM022), was a neutral antagonist; and two compounds, N-(+)-[1-(adamant-1-ylmethyl)-2,4-dioxo-5-phenyl2,3,4,5-tetrahydro-1H-1, 5-benzodiazepin-3-yl]-N'-phenylurea (GV150,013X) and ([(N-[methoxy-3 phenyl] N-[N-methyl N-phenyl carbamoylmethyl], carbomoylmethyl)-3 ureido]-3-phenyl)2-propionic acid (RPR101,048), were inverse agonists. Furthermore, target- and pharmacophore-based docking of ligands followed by molecular dynamic simulation experiments resulted in consistent motion of aromatic residues belonging to a network presumably important for activation, thus providing the first structural explanations for the different pharmacological profiles of tested compounds. This study confirms that several referenced so-called antagonists are in fact partial agonists, and because of this undesired activity, we suggest that newly generated molecules should be preferred to efficiently block CCK2R-related physiological effects. Furthermore, data on the structural basis for the different pharmacological features of CCK2R ligands will serve to further clarify CCK2R mechanism of activation. Copyright © 2006 The American Society for Pharmacology and Experimental Therapeutics.
Resumo:
BACKGROUND:
The genetic heterogeneity of many Mendelian disorders, such as retinitis pigmentosa which results from mutations in over 40 genes, is a major obstacle to obtaining a molecular diagnosis in clinical practice. Targeted high-throughput DNA sequencing offers a potential solution and was used to develop a molecular diagnostic screen for patients with retinitis pigmentosa.
METHODS:
A custom sequence capture array was designed to target the coding regions of all known retinitis pigmentosa genes and used to enrich these sequences from DNA samples of five patients. Enriched DNA was subjected to high-throughput sequencing singly or in pools, and sequence variants were identified by alignment of up to 10 million reads per sample to the normal reference sequence. Potential pathogenicity was assessed by functional predictions and frequency in controls.
RESULTS AND CONCLUSIONS:
Known homozygous PDE6B and compound heterozygous CRB1 mutations were detected in two patients. A novel homozygous missense mutation (c.2957A?T; p.N986I) in the cyclic nucleotide gated channel ß1 (CNGB1) gene predicted to have a deleterious effect and absent in 720 control chromosomes was detected in one case in which conventional genetic screening had failed to detect mutations. The detection of known and novel retinitis pigmentosa mutations in this study establishes high-throughput DNA sequencing with DNA pooling as an effective diagnostic tool for heterogeneous genetic diseases.
Resumo:
Objective: To test the hypothesis that atopic diseases in early life are associated with a reduced risk (protection) for the development of type 1 diabetes in childhood.
Resumo:
Purose: The traditional approach for identifying subjects at risk from cardiovascular diseases (CVD) is to determine the extent of clustering of biological risk factors adjusted for lifestyle. Recently, markers of endothelial dysfunction and low grade inflammation, including high sensitivity C-reactive protein (hsCRP), soluble intercellular adhesion molecules (sICAM), and soluble vascular adhesion molecules (sVCAM), have been included in the detection for high risk individuals. However, the relationship of these novel biomarkers with CVD risk in adolescents remains unclear. The purpose of this study, therefore, was to establish the association of hsCRP, sICAM, and sVCAM with CVD risk in an adolescent population.
Methods: Data from the Young Hearts 2000 cross-sectional cohort study, carried out in 1999-2001, were used. From a total of 2,017 male and female participants, 95 obese subjects were identified and matched according to age, sex, and cigarette smoking, with 95 overweight and 95 normal-weight adolescents. Clustered CVD risk was computed using a sum of Z-scores of biological risk factors. The relationship was described using multiple linear regression analyses.
Results: hsCRP, sICAM, and sVCAM showed significant associations with CVD risk. hsCRP and sICAM had a positive relation with CVD risk, whereas sVCAM showed an inverse relationship. In this study, lifestyle factors showed no relation with CVD risk.
Conclusion: The results fit the hypothesized role of low grade inflammation and endothelial dysfunction in CVD risk in asymptomatic adolescents. The inverse relationship of VCAM, however, is hard to explain and indicates the complex mechanisms underlying CVD. Further research is needed to draw firm conclusions on the biomarkers used.
Resumo:
Chronic kidney disease is common with up to 5% of the adult population reported to have an estimated glomerular filtration rate of