894 resultados para Diabetes Diet therapy
Resumo:
One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence-defined as fasting plasma glucose of 7.0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs-in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. We used data from 751 studies including 4,372,000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4.3% (95% credible interval 2.4-7.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28.5% due to the rise in prevalence, 39.7% due to population growth and ageing, and 31.8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. Wellcome Trust.
Resumo:
TCF7L2 is the susceptibility gene for Type 2 diabetes (T2D) with the largest effect on disease risk that has been discovered to date. However, the mechanisms by which TCF7L2 contributes to the disease remain largely elusive. In addition, epigenetic mechanisms, such as changes in DNA methylation patterns, might have a role in the pathophysiology of T2D. This study aimed to investigate the differences in terms of DNA methylation profile of TCF7L2 promoter gene between type 2 diabetic patients and age- and Body Mass Index (BMI)- matched controls. We included 93 type 2 diabetic patients that were recently diagnosed for T2D and exclusively on diet (without any pharmacological treatment). DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Type 2 diabetic patients were more insulin resistant than their matched controls (mean HOMA IR 2.6 vs 1.8 in controls, P<0.001) and had a poorer beta-cell function (mean HOMA B 75.7 vs. 113.6 in controls, P<0.001). Results showed that 59% of the CpGs analyzed in TCF7L2 promoter had significant differences between type 2 diabetic patients and matched controls. In addition, fasting glucose, HOMA-B, HOMA-IR, total cholesterol and LDL-cholesterol correlated with methylation in specific CpG sites of TCF7L2 promoter. After adjustment by age, BMI, gender, physical inactivity, waist circumference, smoking status and diabetes status uniquely fasting glucose, total cholesterol and LDL-cholesterol remained significant. Taken together, newly diagnosed, drug-naïve type 2 diabetic patients display specific epigenetic changes at the TCF7L2 promoter as compared to age- and BMI-matched controls. Methylation in TCF7L2 promoter is further correlated with fasting glucose in peripheral blood DNA, which sheds new light on the role of epigenetic regulation of TCF7L2 in T2D.
Resumo:
PURPOSE: To evaluate the frequency of fear of needles and the impact of a multidisciplinary educational program in women with pre-gestational and gestational diabetes taking insulin during pregnancy. METHODS: The short Diabetes Fear of Injecting and Self-testing Questionnaire (D-FISQ), composed by two subscales that access fear of self injection (FSI) and fear of self testing (FST), was administered twice during pregnancy to 65 pregnant women with pre-gestational and gestational diabetes: at the first endocrine consult and within the last two weeks of pregnancy or postpartum. An organized multidisciplinary program provided diabetes education during pregnancy. Statistical analysis was carried out by Wilcoxon and McNemar tests and Spearman correlation. A p<0.05 was considered to be significant. RESULTS: Data from the short D-FISQ questionnaire shows that 43.1% of pregnant women were afraid of needles in the first evaluation. There was a significant reduction in scores for FSI and FST subscales between the first and second assessments (first FSI 38.5% compared with second 12.7%, p=0.001; first FST 27.7% compared with second FST 14.3%, p=0.012). CONCLUSIONS: The fear of needles is common in pregnant women on insulin therapy and an organized multidisciplinary educational diabetes program applied during pregnancy reduces scores of such fear.
Resumo:
METFORMIININ KÄYTTÖ RASKAUSDIABETEKSESSA Raskausdiabeteksella tarkoitetaan sokeriaineenvaihdunnan häiriötä, joka todetaan ensimmäisen kerran raskauden aikana. Hoidolla voidaan vähentää raskausdiabetekseen liittyviä äidin ja vastasyntyneen haittoja. Lääkitystä tarvitaan, jos ruokavaliohoidolla ei saavuteta hyvää sokeritasapainoa. Perinteisesti lääkityksenä on käytetty insuliinia, mutta metformii¬nin käyttöä insuliinin vaihtoehtona on ehdotettu. Metformiini läpäisee istukan, mutta sen läpäisymekanismi ei ole selvillä. Tämän tutkimuskokonaisuuden pääasiallisin tarkoitus oli verrata metformiinin tehokkuutta ja turvallisuutta insuliiniin raskausdiabeteksen hoidossa selvittämällä lääkkeen vaiku¬tusta äitiin ja vastasyntyneeseen. Lisäksi haluttiin tutkia, mitkä tekijät ennustavat insulii¬nin tarvetta metformiinin lisänä, jotta saavutettaisiin hyvä sokeritasapaino. Metformiinin annoksen vaikutus äitiin ja vastasyntyneeseen arvioitiin mittaamalla metformiinin pitoisuus äidistä, ja sikiön puolelta napanuoran veressä. Tässä tutkimuksessa selvitettiin myös aktiivisen kuljetusproteiinin (OCT) merkitystä metformiinin kulkeutumiseen istukan läpi perfusiomalla istukkaa ex vivo . Ex vivo istukkaperfuusiotutkimuksen tulokset viittasivat siihen, että OCT-kuljetusproteiinilla ei ollut todennäköisesti merkittävää osuutta metformiinin kulkeutumisessa istukan läpi. Metformiinin pitoisuusmittaukset synnytyksen yhteydessä osoittivat metformiinin siirtyvän sikiöön istukan läpi suuressa määrin (96 %) kertymättä kuitenkaan sikiön verenkiertoon. Metformiinin pitoisuudella ei ollut vaikutusta vastasyntyneen hyvinvointiin. Maksi¬maalisella metformiinin annostuksella ja korkealla metformiinipitoisuudella todettiin olevan suotuisa vaikutus äidin painon nousuun raskauden aikana. Insuliiniin verrattuna metformiini ei lisännyt äidin, sikiön tai vastasyntyneen haittatapahtumia, eikä sillä ollut vaikutusta synnytystapaan. Sokeritasapaino insuliini- ja metformiinilääkityksen aikana oli yhtäläinen arvioitaessa sitä HbA1c- ja fruktosamiinimittauksilla, mutta 21 % metformiinin käyttäjistä tarvitsi lisäksi insuliinia hyvän sokeritasapainon saavuttamiseksi. Tutkimuksesssa todettiin, että mitä iäkkäämpi äiti oli, mitä varhaisemmassa raskauden vaiheessa sokerirasitus oli tehty ja lääkitys aloitettu, ja mitä korkeammat HbA1c ja fruktosamiinipitoisuudet olivat, sitä suuremmalla todennäköisyydellä metformiinin lisänä tarvittiin insuliinia.
Resumo:
Lack of the physiological nocturnal fall in blood pressure (BP) has been found in diabetics and it seems to be related to the presence of diabetic complications. The present study examined the changes in the nocturnal BP pattern of 8 normotensive insulin-dependent diabetic adolescents without nephropathy following improvement in glycemic control induced by an 8-day program of adequate diet and exercise. The same number of age- and sex-matched control subjects were studied. During the first and eighth nights of the program, BP was obtained by ambulatory BP monitoring. After a 10-min rest, 3 BP and heart rate (HR) recordings were taken and the mean values were considered to represent their awake values. The monitor was programmed to cuff insufflation every 20 min from 10:00 p.m. to 7:00 a.m. The glycemic control of diabetics improved since glycemia (212.0 ± 91.5 to 140.2 ± 69.1 mg/dl, P<0.03), urine glucose (12.7 ± 11.8 to 8.6 ± 6.4 g/24 h, P = 0.08) and insulin dose (31.1 ± 7.7 to 16.1 ± 9.7 U/day, P<0.01) were reduced on the last day. The mean BP of control subjects markedly decreased during the sleeping hours of night 1 (92.3 ± 6.4 to 78.1 ± 5.0 mmHg, P<0.001) and night 8 (87.3 ± 6.7 to 76.9 ± 3.6 mmHg, P<0.001). Diabetic patients showed a slight decrease in mean BP during the first night. However, the fall in BP during the nocturnal period increased significantly on the eighth night. The average awake-sleep BP variation was significantly higher at the end of the study (4.2 vs 10.3%, P<0.05) and this ratio turned out to be similar to that found in the control group (10.3 vs 16.3%). HR variation also increased on the eighth night in the diabetics. Following the metabolic improvement obtained at the end of the period, the nocturnal BP variation of diabetics was close to the normal pattern. We suggest that amelioration of glycemic control may influence the awake-sleep BP and HR differences. This effect may be due at least in part to an attenuated insulin stimulation of sympathetic activity
Resumo:
Pancreatic ß cell function and insulin sensitivity, analyzed by the homeostasis model assessment, before and after 24 weeks of insulin therapy were studied and correlated with the presence of autoantibodies against ß cells (islet cell and anti-glutamic acid decarboxylase antibodies), in a group of 18 Brazilian lean adult non-insulin-dependent diabetes mellitus (NIDDM) patients with oral hypoglycemic agent failure (OHAF). Median fasting plasma glucose before and after insulin treatment was 19.1 and 8.5 mmol/l, respectively (P < 0.001); median HbA1c was 11.7% before vs 7.2% after insulin treatment (P < 0.001). Forty-four percent of the patients were positive (Ab+) to at least one autoantibody. Fasting C-peptide levels were lower in Ab+ than Ab- patients, both before (Ab+: 0.16 ± 0.09 vs Ab-: 0.41 ± 0.35 nmol/l, P < 0.003) and after insulin treatment (Ab+: 0.22 ± 0.13 vs Ab-: 0.44 ± 0.24 nmol/l, P < 0.03). Improvement of Hß was seen in Ab- (median before: 7.3 vs after insulin therapy: 33.4%, P = 0.003) but not in Ab+ patients (median before: 6.6 vs after insulin therapy: 20.9%). These results show that the OHAF observed in the 18 NIDDM patients studied was due mainly to two major causes: autoantibodies and ß cell desensitization. Autoantibodies against ß cells could account for 44% of OHAF, but Ab- patients may still present ß cell function recovery, mainly after a period of ß cell rest with insulin therapy. However, the effects of ß cell function recovery on the restoration of the response to oral hypoglycemic agents need to be determined.
Resumo:
Since neurovascular control is altered in obese subjects, we hypothesized that weight loss by diet (D) or diet plus exercise training (D + ET) would improve neurovascular control during mental stress in obese women. In a study with a dietary reduction of 600 kcal/day with or without exercise training for 4 months, 53 obese women were subdivided in D (N = 22, 33 ± 1 years, BMI 34 ± 1 kg/m²), D + ET (N = 22, 33 ± 1 years, BMI 33 ± 1 kg/m²), and nonadherent (NA, N = 9, 35 ± 2 years, BMI 33 ± 1 kg/m²) groups. Muscle sympathetic nerve activity (MSNA) was measured by microneurography and forearm blood flow by venous occlusion plethysmography. Mental stress was elicited by a 3-min Stroop color word test. Weight loss was similar between D and D + ET groups (87 ± 2 vs 79 ± 2 and 85 ± 2 vs 76 ± 2 kg, respectively, P < 0.05) with a significant reduction in MSNA during mental stress (58 ± 2 vs 50 ± 2, P = 0.0001, and 59 ± 3 vs 50 ± 2 bursts/100 beats, P = 0.0001, respectively), although the magnitude of the response was unchanged. Forearm vascular conductance during mental stress was significantly increased only in D + ET (2.74 ± 0.22 vs 3.52 ± 0.19 units, P = 0.02). Weight loss reduces MSNA during mental stress in obese women. The increase in forearm vascular conductance after weight loss provides convincing evidence for D + ET interventions as a nonpharmacologic therapy of human obesity.
Resumo:
A study was undertaken to investigate the effect of administering praziquantel (PZQ), focusing on the liver stereological findings of malnourished mice infected with Schistosoma mansoni. Thirty female Swiss Webster mice (age: 21 days; weight: 8-14 g) were fed either a low-protein diet (8%) or standard chow (22% protein) for 15 days. Five mice in each group were infected with 50 cercariae each of the BH strain (Brazil). PZQ therapy (80 mg/kg body weight, per day) was started on the 50th day of infection and consisted of daily administration for 5 days. Volume density (hepatocytes, sinusoids and hepatic fibrosis) was determined by stereology using a light microscope. Body weight gain and total serum albumin levels were always lower in undernourished mice. Our stereological study demonstrated that treatment increased both volume density of hepatocytes in mice fed standard chow (47.56%, treated group and 12.06%, control) and low-protein chow (30.98%, treated group and 21.44%, control), and hepatic sinusoids [standard chow (12.52%, treated group and 9.06%, control), low-protein chow (14.42%, treated group and 8.46%, control)], while hepatic fibrosis was reduced [standard chow (39.92%, treated group and 78.88%, control) and low-protein chow (54.60%, treated group and 70.10%, control)]. On the other hand, mice fed low-protein chow decreased density volume of hepatocytes and hepatic fibrosis. In conclusion, our findings indicate that treatment with PZQ ameliorates hepatic schistosomiasis pathology even in mice fed a low-protein diet.
Resumo:
The objective of this study was to evaluate the effect of metabolic syndrome (MetS) and its individual components on the renal function of patients with type 2 diabetes mellitus (DM). A cross-sectional study was performed in 842 type 2 DM patients. A clinical and laboratory evaluation, including estimated glomerular filtration rate (eGFR) calculated by the modification of diet in renal disease formula, was performed. MetS was defined according to National Cholesterol Education Program - Adult Treatment Panel III criteria. Mean patient age was 57.9 ± 10.1 years and 313 (37.2%) patients were males. MetS was detected in 662 (78.6%) patients. A progressive reduction in eGFR was observed as the number of individual MetS components increased (one: 98.2 ± 30.8; two: 92.9 ± 28.1; three: 84.0 ± 25.1; four: 83.8 ± 28.5, and five: 79.0 ± 23.0; P < 0.001). MetS increased the risk for low eGFR (<60 mL·min-1·1.73 (m²)-1) 2.82-fold (95%CI = 1.55-5.12, P < 0.001). Hypertension (OR = 2.2, 95%CI = 1.39-3.49, P = 0.001) and hypertriglyceridemia (OR = 1.62, 95%CI = 1.19-2.20, P = 0.002) were the individual components with the strongest associations with low eGFR. In conclusion, there is an association between MetS and the reduction of eGFR in patients with type 2 DM, with hypertension and hypertriglyceridemia being the most important contributors in this sample. Interventional studies should be conducted to determine if treatment of MetS can prevent renal failure in type 2 DM patients.
Resumo:
Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.
Resumo:
Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m2], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality.
Resumo:
Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.
Resumo:
Diabetes mellitus, an endocrine disorder, is the major cause of morbidity in developing countries, and it is considered the fourth leading cause of death worldwide. The conventional therapy for diabetes is insulin treatment. The peel of the Passion fruit is rich in fiber and prevents the absorption of carbohydrates, and thus can control and reduce the blood sugar rate. The objective of this study was to analyze the effect of the passion fruit peel flour on the glicemia of diabetic rats, as well as to study the probable action mechanisms. Wistar rats were used in the experiment and were offered the flours of the passion fruit peel in three concentrations: 5, 10, and 15%, and a casein diet as control. The most significant effect on the reduction of the glicemic rate was obtained with the 5% diet. The best values of hepatic glycogen were found in the 5 and 10% diets. The results of this study suggest that the 5% passion fruit flour diet was the one that provided the best reduction of blood glucose levels (59%) and the higher increase of the hepatic glycogen level (71%). The conversion of blood glucose into hepatic glycogen was considered the probable action mechanism involved.
Resumo:
The importance of the kidney in glucose homeostasis has been recognized for many years. Recent observations indicating a greater role of renal glucose metabolism in various physiologic and pathologic conditions have rekindled the interest in renal glucose handling as a potential target for the treatment of diabetes. The enormous capacity of the proximal tubular cells to reabsorb the filtered glucose load entirely, utilizing the sodium-glucose co-transporter system (primarily SGLT-2), became the focus of attention. Original studies conducted in experimental animals with the nonspecific SGLT inhibitor phlorizin showed that hyperglycemia after pancreatectomy decreased as a result of forced glycosuria. Subsequently, several compounds with more selective SGLT-2 inhibition properties (“second-generation”) were developed. Some agents made it into pre-clinical and clinical trials and a few have already been approved for commercial use in the treatment of type 2 diabetes. In general, a 6-month period of therapy with SGLT-2 inhibitors is followed by a mean urinary glucose excretion rate of ~80 g/day accompanied by a decline in fasting and postprandial glucose with average decreases in HgA1C ~1.0%. Concomitant body weight loss and a mild but consistent drop in blood pressure also have been reported. In contrast, transient polyuria, thirst with dehydration and occasional hypotension have been described early in the treatment. In addition, a significant increase in the occurrence of uro-genital infections, particularly in women has been documented with the use of SGLT-2 inhibitors. Conclusion: Although long-term cardiovascular, renal and bone/mineral effects are unknown SGLT-2 inhibitors, if used with caution and in the proper patient provide a unique insulin-independent therapeutic option in the management of obese type 2 diabetes patients.