942 resultados para Detecting
Resumo:
We present a method to verify the metrological usefulness of noisy Dicke states of a particle ensemble with only a few collective measurements, without the need for a direct measurement of the sensitivity. Our method determines the usefulness of the state for the usual protocol for estimating the angle of rotation with Dicke states, which is based on the measurement of the second moment of a total spin component. It can also be used to detect entangled states that are useful for quantum metrology. We apply our method to recent experimental results.
Resumo:
Recent progress in the technology for single unit recordings has given the neuroscientific community theopportunity to record the spiking activity of large neuronal populations. At the same pace, statistical andmathematical tools were developed to deal with high-dimensional datasets typical of such recordings.A major line of research investigates the functional role of subsets of neurons with significant co-firingbehavior: the Hebbian cell assemblies. Here we review three linear methods for the detection of cellassemblies in large neuronal populations that rely on principal and independent component analysis.Based on their performance in spike train simulations, we propose a modified framework that incorpo-rates multiple features of these previous methods. We apply the new framework to actual single unitrecordings and show the existence of cell assemblies in the rat hippocampus, which typically oscillate attheta frequencies and couple to different phases of the underlying field rhythm
Resumo:
The cotton industry in Australia funds biannual disease surveys conducted by plant pathologists. The objective of these surveys is to monitor the distribution and importance of key endemic pests and record the presence or absence of new or exotic diseases. Surveys have been conducted in Queensland since 2002/03, with surveillance undertaken by experienced plant pathologists. Monitoring of endemic diseases indicates the impact of farming practices on disease incidence and severity. The information collected gives direction to cotton disease research. Routine diagnostics has provided early detection of new disease problems which include 1) the identification of Nematospora coryli, a pathogenic yeast associated with seed and internal boll rot; and 2) Rotylenchulus reniformis, a plant-parasitic nematode. This finding established the need for an intensive survey of the Theodore district revealing that reniform was prevalent across the district at populations causing up to 30% yield loss. Surveys have identified an exotic defoliating strain (VCG 1A) and non-defoliating strains of Verticillium dahliae, which cause Verticillium wilt. An intensive study of the diversity of V. dahliae and the impact these strains have on cotton are underway. Results demonstrate the necessity of general multi-pest surveillance systems in broad acre agriculture in providing (1) an ongoing evaluation of current integrated disease management practices and (2) early detection for a suite of exotic pests and previously unknown pests.
Resumo:
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system’s user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A higher level system call language for measuring similarity between patterns of such calls is also suggested.
Resumo:
Botnets, which consist of thousands of compromised machines, can cause a significant threat to other systems by launching Distributed Denial of Service attacks, keylogging, and backdoors. In response to this threat, new effective techniques are needed to detect the presence of botnets. In this paper, we have used an interception technique to monitor Windows Application Programming Interface system calls made by communication applications. Existing approaches for botnet detection are based on finding bot traffic patterns. Our approach does not depend on finding patterns but rather monitors the change of behaviour in the system. In addition, we will present our idea of detecting botnet based on log correlations from different hosts.
Resumo:
INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.
Resumo:
In the past few years, IRC bots, malicious programs which are remotely controlled by the attacker through IRC servers, have become a major threat to the Internet and users. These bots can be used in different malicious ways such as issuing distributed denial of services attacks to shutdown other networks and services, keystrokes logging, spamming, traffic sniffing cause serious disruption on networks and users. New bots use peer to peer (P2P) protocols start to appear as the upcoming threat to Internet security due to the fact that P2P bots do not have a centralized point to shutdown or traceback, thus making the detection of P2P bots is a real challenge. In response to these threats, we present an algorithm to detect an individual P2P bot running on a system by correlating its activities. Our evaluation shows that correlating different activities generated by P2P bots within a specified time period can detect these kind of bots.
Resumo:
Comunicação apresentada na 44th SEFI Conference, 12-15 September 2016, Tampere, Finland
Resumo:
Free-riding behaviors exist in tourism and they should be analyzed from a comprehensive perspective; while the literature has mainly focused on free riders operating in a destination, the destinations themselves might also free ride when they are under the umbrella of a collective brand. The objective of this article is to detect potential free-riding destinations by estimating the contribution of the different individual destinations to their collective brands, from the point of view of consumer perception. We argue that these individual contributions can be better understood by reflecting the various stages that tourists follow to reach their final decision. A hierarchical choice process is proposed in which the following choices are nested (not independent): “whether to buy,” “what collective brand to buy,” and “what individual brand to buy.” A Mixed Logit model confirms this sequence, which permits estimation of individual contributions and detection of free riders.
Resumo:
The central oscillator of the cyanobacterial circadian clock is unique in the biochemical simplicity of its components and the robustness of the oscillation. The oscillator is composed of three cyanobacterial proteins: KaiA, KaiB, and KaiC. If very pure preparations of these three proteins are mixed in a test tube in the right proportions and with ATP and MgCl2, the phosphorylation states of KaiC will oscillate with a circadian period, and these states can be analyzed simply by SDS-PAGE. The purity of the proteins is critical for obtaining robust oscillation. Contaminating proteases will destroy oscillation by degradation of Kai proteins, and ATPases will attenuate robustness by consumption of ATP. Here, we provide a detailed protocol to obtain pure recombinant proteins from Escherichia coli to construct a robust cyanobacterial circadian oscillator in vitro. In addition, we present a protocol that facilitates analysis of phosphorylation states of KaiC and other phosphorylated proteins from in vivo samples.
Resumo:
The growth of social networking platforms has drawn a lot of attentions to the need for social computing. Social computing utilises human insights for computational tasks as well as design of systems that support social behaviours and interactions. One of the key aspects of social computing is the ability to attribute responsibility such as blame or praise to social events. This ability helps an intelligent entity account and understand other intelligent entities’ social behaviours, and enriches both the social functionalities and cognitive aspects of intelligent agents. In this paper, we present an approach with a model for blame and praise detection in text. We build our model based on various theories of blame and include in our model features used by humans determining judgment such as moral agent causality, foreknowledge, intentionality and coercion. An annotated corpus has been created for the task of blame and praise detection from text. The experimental results show that while our model gives similar results compared to supervised classifiers on classifying text as blame, praise or others, it outperforms supervised classifiers on more finer-grained classification of determining the direction of blame and praise, i.e., self-blame, blame-others, self-praise or praise-others, despite not using labelled training data.
Resumo:
Purpose: The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Methods: Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. Results: The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911–0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Conclusions: Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.
Resumo:
This paper presents a distributed hierarchical multiagent architecture for detecting SQL injection attacks against databases. It uses a novel strategy, which is supported by a Case-Based Reasoning mechanism, which provides to the classifier agents with a great capacity of learning and adaptation to face this type of attack. The architecture combines strategies of intrusion detection systems such as misuse detection and anomaly detection. It has been tested and the results are presented in this paper.