986 resultados para Design molecular de polímeros


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Adiponectin has anti-atherogenic properties and low circulating adiponectin has been linked to coronary atherosclerosis. Yet, there is considerable evidence that the high-molecular weight (HMW) complex of adiponectin is the major active form of this adipokine. We therefore investigated whether HMW adiponectin is associated with the extent of coronary artery disease (CAD) in men. RESEARCH DESIGN AND METHODS: Associations among CAD, HMW adiponectin and the HMW/total-adiponectin ratio were assessed in 240 male patients undergoing elective coronary angiography. Total adiponectin and HMW adiponectin was measured by enzyme-linked immunosorbent assay and serum levels were correlated with defined coronary scores and established cardiovascular risk factors. RESULTS: We found significant inverse correlations between angiographic scores and HMW adiponectin [Extent Score (ES): r=-0.39; Gensini Score (GS): r=-0.35; and Severity Score (SS): r=-0.40, all P<0.001], and the HMW/total-adiponectin ratio (ES: r=-0.49; GS: r=-0.46; SS: r=-0.46; all P<0.001). Multivariable regression analyses revealed that HMW adiponectin and the HMW/total-adiponectin ratio were significantly associated with the extent of CAD (both P<0.001). ROC analyses demonstrated that the predictive value of HMW adiponectin and the HMW/total-adiponectin ratio for the extent of coronary atherosclerosis significantly exceeded that of total adiponectin (P<0.001, P=0.010, respectively). CONCLUSIONS: HMW adiponectin and the HMW/total-adiponectin ratio inversely correlate with the extent of CAD. HMW adiponectin in particular seems to be a better marker for CAD extent than total adiponectin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human rhinoviruses (HRV), and to a lesser extent human enteroviruses (HEV), are important respiratory pathogens. Like other RNA viruses, these picornaviruses have an intrinsic propensity to variability. This results in a large number of different serotypes as well as the incessant discovery of new genotypes. This large and growing diversity not only complicates the design of real-time PCR assays but also renders immunofluorescence unfeasible for broad HRV and HEV detection or quantification in cells. In this study, we used the 5' untranslated region, the most conserved part of the genome, as a target for the development of both a real-time PCR assay (Panenterhino/Ge/08) and a peptide nucleic acid-based hybridization oligoprobe (Panenterhino/Ge/08 PNA probe) designed to detect all HRV and HEV species members according to publicly available sequences. The reverse transcription-PCR assay has been validated, using not only plasmid and viral stocks but also quantified RNA transcripts and around 1,000 clinical specimens. These new generic detection PCR assays overcame the variability of circulating strains and lowered the risk of missing emerging and divergent HRV and HEV. An additional real-time PCR assay (Entero/Ge/08) was also designed specifically to provide sensitive and targeted detection of HEV in cerebrospinal fluid. In addition to the generic probe, we developed specific probes for the detection of HRV-A and HRV-B in cells. This investigation provides a comprehensive toolbox for accurate molecular identification of the different HEV and HRV circulating in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecules are the smallest possible elements for electronic devices, with active elements for such devices typically a few Angstroms in footprint area. Owing to the possibility of producing ultrahigh density devices, tremendous effort has been invested in producing electronic junctions by using various types of molecules. The major issues for molecular electronics include (1) developing an effective scheme to connect molecules with the present micro- and nano-technology, (2) increasing the lifetime and stabilities of the devices, and (3) increasing their performance in comparison to the state-of-the-art devices. In this work, we attempt to use carbon nanotubes (CNTs) as the interconnecting nanoelectrodes between molecules and microelectrodes. The ultimate goal is to use two individual CNTs to sandwich molecules in a cross-bar configuration while having these CNTs connected with microelectrodes such that the junction displays the electronic character of the molecule chosen. We have successfully developed an effective scheme to connect molecules with CNTs, which is scalable to arrays of molecular electronic devices. To realize this far reaching goal, the following technical topics have been investigated. 1. Synthesis of multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition (T-CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques (Chapter 3). We have evaluated the potential use of tubular and bamboo-like MWCNTs grown by T-CVD and PE-CVD in terms of their structural properties. 2. Horizontal dispersion of MWCNTs with and without surfactants, and the integration of MWCNTs to microelectrodes using deposition by dielectrophoresis (DEP) (Chapter 4). We have systematically studied the use of surfactant molecules to disperse and horizontally align MWCNTs on substrates. In addition, DEP is shown to produce impurityfree placement of MWCNTs, forming connections between microelectrodes. We demonstrate the deposition density is tunable by both AC field strength and AC field frequency. 3. Etching of MWCNTs for the impurity-free nanoelectrodes (Chapter 5). We show that the residual Ni catalyst on MWCNTs can be removed by acid etching; the tip removal and collapsing of tubes into pyramids enhances the stability of field emission from the tube arrays. The acid-etching process can be used to functionalize the MWCNTs, which was used to make our initial CNT-nanoelectrode glucose sensors. Finally, lessons learned trying to perform spectroscopic analysis of the functionalized MWCNTs were vital for designing our final devices. 4. Molecular junction design and electrochemical synthesis of biphenyl molecules on carbon microelectrodes for all-carbon molecular devices (Chapter 6). Utilizing the experience gained on the work done so far, our final device design is described. We demonstrate the capability of preparing patterned glassy carbon films to serve as the bottom electrode in the new geometry. However, the molecular switching behavior of biphenyl was not observed by scanning tunneling microscopy (STM), mercury drop or fabricated glassy carbon/biphenyl/MWCNT junctions. Either the density of these molecules is not optimum for effective integration of devices using MWCNTs as the nanoelectrodes, or an electroactive contaminant was reduced instead of the ionic biphenyl species. 5. Self-assembly of octadecanethiol (ODT) molecules on gold microelectrodes for functional molecular devices (Chapter 7). We have realized an effective scheme to produce Au/ODT/MWCNT junctions by spanning MWCNTs across ODT-functionalized microelectrodes. A percentage of the resulting junctions retain the expected character of an ODT monolayer. While the process is not yet optimized, our successful junctions show that molecular electronic devices can be fabricated using simple processes such as photolithography, self-assembled monolayers and dielectrophoresis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The remarkable advances in nanoscience and nanotechnology over the last two decades allow one to manipulate individuals atoms, molecules and nanostructures, make it possible to build devices with only a few nanometers, and enhance the nano-bio fusion in tackling biological and medical problems. It complies with the ever-increasing need for device miniaturization, from magnetic storage devices, electronic building blocks for computers, to chemical and biological sensors. Despite the continuing efforts based on conventional methods, they are likely to reach the fundamental limit of miniaturization in the next decade, when feature lengths shrink below 100 nm. On the one hand, quantum mechanical efforts of the underlying material structure dominate device characteristics. On the other hand, one faces the technical difficulty in fabricating uniform devices. This has posed a great challenge for both the scientific and the technical communities. The proposal of using a single or a few organic molecules in electronic devices has not only opened an alternative way of miniaturization in electronics, but also brought up brand-new concepts and physical working mechanisms in electronic devices. This thesis work stands as one of the efforts in understanding and building of electronic functional units at the molecular and atomic levels. We have explored the possibility of having molecules working in a wide spectrum of electronic devices, ranging from molecular wires, spin valves/switches, diodes, transistors, and sensors. More specifically, we have observed significant magnetoresistive effect in a spin-valve structure where the non-magnetic spacer sandwiched between two magnetic conducting materials is replaced by a self-assembled monolayer of organic molecules or a single molecule (like a carbon fullerene). The diode behavior in donor(D)-bridge(B)-acceptor(A) type of single molecules is then discussed and a unimolecular transistor is designed. Lastly, we have proposed and primarily tested the idea of using functionalized electrodes for rapid nanopore DNA sequencing. In these studies, the fundamental roles of molecules and molecule-electrode interfaces on quantum electron transport have been investigated based on first-principles calculations of the electronic structure. Both the intrinsic properties of molecules themselves and the detailed interfacial features are found to play critical roles in electron transport at the molecular scale. The flexibility and tailorability of the properties of molecules have opened great opportunity in a purpose-driven design of electronic devices from the bottom up. The results that we gained from this work have helped in understanding the underlying physics, developing the fundamental mechanism and providing guidance for future experimental efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have recently developed a method to obtain distributed atomic polarizabilities adopting a partitioning of the molecular electron density (for example, the Quantum Theory of Atoms in Molecules, [1]), calculated with or without an applied electric field. The procedure [2] allows to obtained atomic polarizability tensors, which are perfectly exportable, because quite representative of an atom in a given functional group. Among the many applications of this idea, the calculation of crystal susceptibility is easily available, either from a rough estimation (the polarizability of the isolated molecule is used) or from a more precise estimation (the polarizability of a molecule embedded in a cluster representing the first coordination sphere is used). Lorentz factor is applied to include the long range effect of packing, which is enhancing the molecular polarizability. Simple properties like linear refractive index or the gyration tensor can be calculated at relatively low costs and with good precision. This approach is particularly useful within the field of crystal engineering of organic/organometallic materials, because it would allow a relatively easy prediction of a property as a function of the packing, thus allowing "reverse crystal engineering". Examples of some amino acid crystals and salts of amino acids [3] will be illustrated, together with other crystallographic or non-crystallographic applications. For example, the induction and dispersion energies of intermolecular interactions could be calculated with superior precision (allowing anisotropic van der Waals interactions). This could allow revision of some commonly misunderstood intermolecular interactions, like the halogen bonding (see for example the recent remarks by Stone or Gilli [4]). Moreover, the chemical reactivity of coordination complexes could be reinvestigated, by coupling the conventional analysis of the electrostatic potential (useful only in the circumstances of hard nucleophilic/electrophilic interaction) with the distributed atomic polarizability. The enhanced reactivity of coordinated organic ligands would be better appreciated. [1] R. F. W. Bader, Atoms in Molecules: A Quantum Theory. Oxford Univ. Press, 1990. [2] A. Krawczuk-Pantula, D. Pérez, K. Stadnicka, P. Macchi, Trans. Amer. Cryst. Ass. 2011, 1-25 [3] A. S. Chimpri1, M. Gryl, L. H.R. Dos Santos1, A. Krawczuk, P. Macchi Crystal Growth & Design, in the press. [4] a) A. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005−7009; b) V. Bertolasi, P. Gilli, G. Gilli Crystal Growth & Design, 2013, 12, 4758-4770.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Switzerland has a complex human immunodeficiency virus (HIV) epidemic involving several populations. We examined transmission of HIV type 1 (HIV-1) in a national cohort study. Latent class analysis was used to identify socioeconomic and behavioral groups among 6,027 patients enrolled in the Swiss HIV Cohort Study between 2000 and 2011. Phylogenetic analysis of sequence data, available for 4,013 patients, was used to identify transmission clusters. Concordance between sociobehavioral groups and transmission clusters was assessed in correlation and multiple correspondence analyses. A total of 2,696 patients were infected with subtype B, 203 with subtype C, 196 with subtype A, and 733 with recombinant subtypes (mainly CRF02_AG and CRF01_AE). Latent class analysis identified 8 patient groups. Most transmission clusters of subtype B were shared between groups of gay men (groups 1-3) or between the heterosexual groups "heterosexual people of lower socioeconomic position" (group 4) and "injection drug users" (group 8). Clusters linking homosexual and heterosexual groups were associated with "older heterosexual and gay people on welfare" (group 5). "Migrant women in heterosexual partnerships" (group 6) and "heterosexual migrants on welfare" (group 7) shared non-B clusters with groups 4 and 5. Combining approaches from social and molecular epidemiology can provide insights into HIV-1 transmission and inform the design of prevention strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular beacons (MBs) are stem-loop DNA probes used for identifying and reporting the presence and localization of nucleic acid targets in vitro and in vivo via target-dependent dequenching of fluorescence. A drawback of conventional MB design is present in the stem sequence that is necessary to keep the MBs in a closed conformation in the absence of a target, but that can participate in target binding in the open (target-on) conformation, giving rise to the possibility of false-positive results. In order to circumvent these problems, we designed MBs in which the stem was replaced by an orthogonal DNA analog that does not cross-pair with natural nucleic acids. Homo-DNA seemed to be specially suited, as it forms stable adenine-adenine base pairs of the reversed Hoogsteen type, potentially reducing the number of necessary building blocks for stem design to one. We found that MBs in which the stem part was replaced by homo-adenylate residues can easily be synthesized using conventional automated DNA synthesis. As conventional MBs, such hybrid MBs show cooperative hairpin to coil transitions in the absence of a DNA target, indicating stable homo-DNA base pair formation in the closed conformation. Furthermore, our results show that the homo-adenylate stem is excluded from DNA target binding, which leads to a significant increase in target binding selectivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field of molecule-based magnets is a relatively new branch of chemistry, which involves the design and study of molecular compounds that exhibit a spontaneous magnetic ordering below a critical temperature, Tc. One major goal involves the design of materials with tuneable Tc's for specific applications in memory storage devices. Molecule-based magnets with high magnetic ordering temperatures have recently been obtained from bimetallic and mixed-valence transition metal μ-cyanide complexes of the Prussian blue family. Since the μ-cyanide linkages permit an interaction between paramagnetic metal ions, cyanometalate building blocks have found useful applications in the field of molecule-based magnets. Our work involves the use of octacyanometalate building blocks for the self-assembly of two new classes of magnetic materials namely, high-spin molecular clusters which exhibit both ferromagnetic intra- and intercluster coupling, and specific extended network topologies which show long-range ferromagnetic ordering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cleverly designed molecular building blocks provide chemists with the tools of a powerful molecular-scale construction set. They enable them to engineer materials having a predictable order and useful solid-state properties. Hence, it is in the realm of supramolecular chemistry to follow a strategy for synthesizing materials which combine a selected set of properties, for instance from the areas of magnetism, photophysics and electronics. As a successful approach, host/guest solids which are based on extended anionic, homo- and bimetallic oxalato-bridged transition-metal compounds with two-and three-dimensional connectivities have been investigated. In this report, a brief review is given on the structural aspects of this class of compounds followed by a presentation of a thermal and magnetic study for two distinct, heterometallic oxalato-bridged layer compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Since the discovery of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, diagnostic protocols were quickly published and deployed globally. OBJECTIVES: We set out to assess the quality of MERS-CoV molecular diagnostics worldwide. STUDY DESIGN: Both sensitivity and specificity were assessed using 12 samples containing different viral loads of MERS-CoV or common coronaviruses (OC43, 229E, NL63, HKU1). RESULTS: The panel was sent to more than 106 participants, of which 99 laboratories from 6 continents returned 189 panel results.Scores ranged from 100% (84 laboratories) to 33% (1 laboratory). 15% of respondents reported quantitative results, 61% semi-quantitative (Ct-values or time to positivity) and 24% reported qualitative results. The major specific technique used was real-time RT-PCR using the WHO recommended targets upE, ORF1a and ORF1b. The evaluation confirmed that RT-PCRs targeting the ORF1b are less sensitive, and therefore not advised for primary diagnostics. CONCLUSIONS: The first external quality assessment MERS-CoV panel gives a good insight in molecular diagnostic techniques and their performances for sensitive and specific detection of MERS-CoV RNA globally. Overall, all laboratories were capable of detecting MERS-CoV with some differences in sensitivity. The observation that 8% of laboratories reported false MERS-CoV positive single assay results shows room for improvement, and the importance of using confirmatory targets.