958 resultados para Design and manufacturing integration
Resumo:
This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.
Resumo:
This paper provides an important and timely overview of a conceptual framework designed to assist with the development of message content, as well as the evaluation, of persuasive health messages. While an earlier version of this framework was presented in a prior publication by the authors in 2009, important refinements to the framework have seen it evolve in recent years, warranting the need for an updated review. This paper outlines the Step approach to Message Design and Testing (or SatMDT) in accordance with the theoretical evidence which underpins, as well as empirical evidence which demonstrates the relevance and feasibility, of each of the framework’s steps. The development and testing of the framework have thus far been based exclusively within the road safety advertising context; however, the view expressed herein is that the framework may have broader appeal and application to the health persuasion context.
Resumo:
'Pars pro toto: Experimental Exhibition Design and Curatorial Paradigms' is situated within the ongoing debate over the conflation of art and curating, and the subsequent tension between artistic autonomy and curatorial intervention. This practice-led research project acclimates these polarities using a collaborative and discursive curatorial methodology in the creation of two exhibitions. Both exhibitions, one digital and one primarily physical, investigated how the temporary exhibition can operate as a site for provocation, how the suggested methodology facilitates the relationship between artist and curator within this paradigm, and outlines factors that assist in expanding the definition of the contemporary curatorial role.
Resumo:
This tutorial primarily focuses on the implementation of Information Accountability (IA) protocols defined in an Information Accountability Framework (IAF) in eHealth systems. Concerns over the security and privacy of patient information are one of the biggest hindrances to sharing health information and the wide adoption of eHealth systems. At present, there are competing requirements between healthcare consumers' (i.e. patients) requirements and healthcare professionals' (HCP) requirements. While consumers want control over their information, healthcare professionals want access to as much information as required in order to make well-informed decisions and provide quality care. This conflict is evident in the review of Australia's PCEHR system and in recent studies of patient control of access to their eHealth information. In order to balance these requirements, the use of an Information Accountability Framework devised for eHealth systems has been proposed. Through the use of IA protocols, so-called Accountable-eHealth systems (AeH) create an eHealth environment where health information is available to the right person at the right time without rigid barriers whilst empowering the consumers with information control and transparency. In this half-day tutorial, we will discuss and describe the technical challenges surrounding the implementation of the IAF protocols into existing eHealth systems and demonstrate their use. The functionality of the protocols and AeH systems will be demonstrated, and an example of the implementation of the IAF protocols into an existing eHealth system will be presented and discussed.
Resumo:
This workshop comprised a diverse group of African construction experts, ranging far wider than RSA. Each of the attendees had attended the annual ASOCSA conference and was additionally provided with a short workshop pre-brief. The aim was to develop a view of their 15-20 year vision of construction improvement in RSA and the steps necessary to get there. These included sociological, structural, technical and process changes. Whilst some suggestions are significantly challenging, none are impossible, given sufficient collaboration between government, industry, academia and NGOs. The highest priority projects (more properly, programmes) were identified and further explored. These are: 1. Information Hub (‘Open Africa’). Aim – to utilise emerging trends in Open Data to provide a force for African unity. 2. Workforce Development. Aim – to rebuild a competent, skilled construction industry for RSA projects and for export. 3. Modular DIY Building. Aim – to accelerate the development of sustainable, cost-efficient and desirable housing for African economic immigrants and others living in makeshift and slum dwellings. Open Data is a maturing theme in different cities and governments around the world and the workshop attendees were very keen to seize such a possibility to assist in developing an environment where Africans can share information and foster collaboration. It is likely that NGOs might be keen to follow up such an initiative. There are significant developments taking place around the world in the construction sector currently, with comparatively large savings being made for taxpayers (20% plus in the UK). Not all of these changes would be easy to transplant to RSA (even more so to much of the rest of Africa). Workforce development was a keen plea amongst the attendees, who seemed concerned that expertise has leaked away and is not being replaced with sufficient intensity. It is possible today to develop modular buildings in such a way that even unskilled residents can assist in their construction, and even their appropriate design. These buildings can be sited nearly autonomously from infrastructures, thus relieving the tensions on cities and townships, whilst providing humane accommodation for the economically disadvantaged. Development of suitable solutions could either be conducted with other similarly stressed countries or developed in-country and the expertise exported. Finally, it should be pointed out that this was very much a first step. Any opportunity to collaborate from an Australian, QUT or CIB perspective would be welcomed, whilst acknowledging that the leading roles belong to RSA, CSIR, NRF, ASOCSA and the University of KwaZulu-Natal.
Resumo:
Pumping systems are widely used in many applications, including municipal water/wastewater services, domestic, commercial and agricultural services, and industrial processes. They are a very significant energy user and consume nearly 20% of the world’s electrical energy demand. Therefore, improving the energy efficiency of pumping systems can provide great benefits in terms of energy, environment, and cost reduction. In this entry, an overview of pump classification with pros and cons of each type of pump is presented. The procedures used to design pumping systems are also outlined. This is then followed by a discussion on the opportunities for improving the energy efficiency of pumping systems during every stage of design, selection, operation, and maintenance.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.
Resumo:
The primary objective of this paper is to study the use of medical image-based finite element (FE) modelling in subjectspecific midsole design and optimisation for heel pressure reduction using a midsole plug under the calcaneus area (UCA). Plugs with different relative dimensions to the size of the calcaneus of the subject have been incorporated in the heel region of the midsole. The FE foot model was validated by comparing the numerically predicted plantar pressure with biomechanical tests conducted on the same subject. For each UCA midsole plug design, the effect of material properties and plug thicknesses on the plantar pressure distribution and peak pressure level during the heel strike phase of normal walking was systematically studied. The results showed that the UCA midsole insert could effectively modify the pressure distribution, and its effect is directly associated with the ratio of the plug dimension to the size of the calcaneus bone of the subject. A medium hardness plug with a size of 95% of the calcaneus has achieved the best performance for relieving the peak pressure in comparison with the pressure level for a solid midsole without a plug, whereas a smaller plug with a size of 65% of the calcaneus insert with a very soft material showed minimum beneficial effect for the pressure relief.
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.
Connecting the space between design and research: Explorations in participatory research supervision
Resumo:
In this article we offer a single case study using an action research method for gathering and analysing data offering insights valuable to both design and research supervision practice. We do not attempt to generalise from this single case, but offer it as an instance that can improve our understanding of research supervision practice. We question the conventional ‘dyadic’ models of research supervision and outline a more collaborative model, based on the signature pedagogy of architecture: the design studio. A novel approach to the supervision of creatively oriented post-graduate students is proposed, including new approaches to design methods and participatory supervision that draw on established design studio practices. This model collapses the distance between design and research activities. Our case study involving Research Masters student supervision in the discipline of Architecture, shows how ‘connected learning’ emerges from this approach. This type of learning builds strong elements of creativity and fun, which promote and enhance student engagement. The results of our action research suggests that students learn to research more easily in such an environment and supervisory practices are enhanced when we apply the techniques and characteristics of design studio pedagogy to the more conventional research pedagogies imported from the humanities. We believe that other creative disciplines can apply similar tactics to enrich both the creative practice of research and the supervision of HDR students.
Resumo:
Genetic mark–recapture requires efficient methods of uniquely identifying individuals. 'Shadows' (individuals with the same genotype at the selected loci) become more likely with increasing sample size, and bias harvest rate estimates. Finding loci is costly, but better loci reduce analysis costs and improve power. Optimal microsatellite panels minimize shadows, but panel design is a complex optimization process. locuseater and shadowboxer permit power and cost analysis of this process and automate some aspects, by simulating the entire experiment from panel design to harvest rate estimation.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
This report describes a methodology for the design and coupling of a proton exchange membrane (PEM) Fuel Cell to an Unmanned Aerial Vehicle (UAV). The report summarizes existing work in the field, the type of UAV and the mission requirements, design the fuel cell system, simulation environment, and compares endurance and range to when the aircraft is fitted with a conventional internal combustion engine (ICE).