903 resultados para Data-driven knowledge acquisition
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Esta dissertação procura investigar e documentar o que está sendo realizado atualmente no Jornalismo de Dados (data-driven journalism) em Portugal. Por ser um campo novo no Jornalismo, se procura, por meio de entrevistas, compreender como os editores de jornais lusitanos definem, caracterizam, utilizam e percebem as potencialidades dessa nova categoria do jornalismo digital. Também são analisados exemplos de reportagens com características de Jornalismo de Dados que foram citadas pelos entrevistados. Contextualizar a evolução e a importância da tecnologia para o surgimento do Jornalismo de Dados foi outro objetivo da pesquisa. Assim, se pretende apresentar o estado da arte do Jornalismo de Dados nos jornais generalistas diários portugueses, visando perceber as tendências atuais na área e deixar um registro para futuros trabalhos sobre o assunto.
Resumo:
Based in internet growth, through semantic web, together with communication speed improvement and fast development of storage device sizes, data and information volume rises considerably every day. Because of this, in the last few years there has been a growing interest in structures for formal representation with suitable characteristics, such as the possibility to organize data and information, as well as the reuse of its contents aimed for the generation of new knowledge. Controlled Vocabulary, specifically Ontologies, present themselves in the lead as one of such structures of representation with high potential. Not only allow for data representation, as well as the reuse of such data for knowledge extraction, coupled with its subsequent storage through not so complex formalisms. However, for the purpose of assuring that ontology knowledge is always up to date, they need maintenance. Ontology Learning is an area which studies the details of update and maintenance of ontologies. It is worth noting that relevant literature already presents first results on automatic maintenance of ontologies, but still in a very early stage. Human-based processes are still the current way to update and maintain an ontology, which turns this into a cumbersome task. The generation of new knowledge aimed for ontology growth can be done based in Data Mining techniques, which is an area that studies techniques for data processing, pattern discovery and knowledge extraction in IT systems. This work aims at proposing a novel semi-automatic method for knowledge extraction from unstructured data sources, using Data Mining techniques, namely through pattern discovery, focused in improving the precision of concept and its semantic relations present in an ontology. In order to verify the applicability of the proposed method, a proof of concept was developed, presenting its results, which were applied in building and construction sector.
Resumo:
Data Mining surge, hoje em dia, como uma ferramenta importante e crucial para o sucesso de um negócio. O considerável volume de dados que atualmente se encontra disponível, por si só, não traz valor acrescentado. No entanto, as ferramentas de Data Mining, capazes de transformar dados e mais dados em conhecimento, vêm colmatar esta lacuna, constituindo, assim, um trunfo que ninguém quer perder. O presente trabalho foca-se na utilização das técnicas de Data Mining no âmbito da atividade bancária, mais concretamente na sua atividade de telemarketing. Neste trabalho são aplicados catorze algoritmos a uma base de dados proveniente do call center de um banco português, resultante de uma campanha para a angariação de clientes para depósitos a prazo com taxas de juro favoráveis. Os catorze algoritmos aplicados no caso prático deste projeto podem ser agrupados em sete grupos: Árvores de Decisão, Redes Neuronais, Support Vector Machine, Voted Perceptron, métodos Ensemble, aprendizagem Bayesiana e Regressões. De forma a beneficiar, ainda mais, do que a área de Data Mining tem para oferecer, este trabalho incide ainda sobre o redimensionamento da base de dados em questão, através da aplicação de duas estratégias de seleção de atributos: Best First e Genetic Search. Um dos objetivos deste trabalho prende-se com a comparação dos resultados obtidos com os resultados presentes no estudo dos autores Sérgio Moro, Raul Laureano e Paulo Cortez (Sérgio Moro, Laureano, & Cortez, 2011). Adicionalmente, pretende-se identificar as variáveis mais relevantes aquando da identificação do potencial cliente deste produto financeiro. Como principais conclusões, depreende-se que os resultados obtidos são comparáveis com os resultados publicados pelos autores mencionados, sendo os mesmos de qualidade e consistentes. O algoritmo Bagging é o que apresenta melhores resultados e a variável referente à duração da chamada telefónica é a que mais influencia o sucesso de campanhas similares.
Resumo:
Results of a search for decays of massive particles to fully hadronic final states are presented. This search uses 20.3 fb−1 of data collected by the ATLAS detector in s√=8TeV proton--proton collisions at the LHC. Signatures based on high jet multiplicities without requirements on the missing transverse momentum are used to search for R-parity-violating supersymmetric gluino pair production with subsequent decays to quarks. The analysis is performed using a requirement on the number of jets, in combination with separate requirements on the number of b-tagged jets, as well as a topological observable formed from the scalar sum of the mass values of large-radius jets in the event. Results are interpreted in the context of all possible branching ratios of direct gluino decays to various quark flavors. No significant deviation is observed from the expected Standard Model backgrounds estimated using jet-counting as well as data-driven templates of the total-jet-mass spectra. Gluino pair decays to ten or more quarks via intermediate neutralinos are excluded for a gluino with mass mg~<1TeV for a neutralino mass mχ~01=500GeV. Direct gluino decays to six quarks are excluded for mg~<917GeV for light-flavor final states, and results for various flavor hypotheses are presented.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Tese de Doutoramento em Estudos da Criança - Especialidade Comunicação Visual e Expressão Plástica
Resumo:
OBJECTIVES: To develop data-driven criteria for clinically inactive disease on and off therapy for juvenile dermatomyositis (JDM). METHODS: The Paediatric Rheumatology International Trials Organisation (PRINTO) database contains 275 patients with active JDM evaluated prospectively up to 24 months. Thirty-eight patients off therapy at 24 months were defined as clinically inactive and included in the reference group. These were compared with a random sample of 76 patients who had active disease at study baseline. Individual measures of muscle strength/endurance, muscle enzymes, physician's and parent's global disease activity/damage evaluations, inactive disease criteria derived from the literature and other ad hoc criteria were evaluated for sensitivity, specificity and Cohen's κ agreement. RESULTS: The individual measures that best characterised inactive disease (sensitivity and specificity >0.8 and Cohen's κ >0.8) were manual muscle testing (MMT) ≥78, physician global assessment of muscle activity=0, physician global assessment of overall disease activity (PhyGloVAS) ≤0.2, Childhood Myositis Assessment Scale (CMAS) ≥48, Disease Activity Score ≤3 and Myositis Disease Activity Assessment Visual Analogue Scale ≤0.2. The best combination of variables to classify a patient as being in a state of inactive disease on or off therapy is at least three of four of the following criteria: creatine kinase ≤150, CMAS ≥48, MMT ≥78 and PhyGloVAS ≤0.2. After 24 months, 30/31 patients (96.8%) were inactive off therapy and 69/145 (47.6%) were inactive on therapy. CONCLUSION: PRINTO established data-driven criteria with clearly evidence-based cut-off values to identify JDM patients with clinically inactive disease. These criteria can be used in clinical trials, in research and in clinical practice.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective.
Resumo:
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.
Resumo:
L'objectiu d'aquest treball és realitzar el disseny de la Intranet a implantar a FdC. La finalitat del projecte és generar tota la informació requerida per garantir una futura implantació de la Intranet amb total garanties.
Resumo:
L'objectiu d'aquest treball és l'exposició detallada de les etapes d'anàlisi, disseny i prototip del projecte de Sol·licituds de Recursos Informàtics. La finalitat d'aquest projecte és la creació d'una eina colaborativa de workflow (circuit de treball) que permeti gestionar de manera eficaç les peticions de serveis o productes rebudes pel departament de tecnologies d'una empresa mitjana/gran, informant en cada moment del seu cicle de vida les persones involucrades en la mateixa.
Resumo:
Amb aquest projecte s'ha portat a terme la planificació i el desenvolupament d'una aplicació web amb tecnologia J2EE. Es tracta d'un sistema que s'assimila a una eina de gestió de coneixement, ja que permet l'emmagatzematge de dades i coneixement en estructures arborescents. Posteriorment es pot accedir a aquest coneixement molt fàcilment, de manera que persones amb poca o nul·la formació en la matèria poden diagnosticar i, fins i tot, resoldre problemes relacionats amb la temàtica de la informació emmagatzemada.