909 resultados para Data-Driven Behavior Modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While most healthy elderly are able to manage their everyday activities, studies showed that there are both stable and declining abilities during healthy aging. For example, there is evidence that semantic memory processes which involve controlled retrieval mechanism decrease, whereas the automatic functioning of the semantic network remains intact. In contrast, patients with Alzheimer’s disease (AD) suffer from episodic and semantic memory impairments aggravating their daily functioning. In AD, severe episodic as well as semantic memory deficits are observable. While the hallmark symptom of episodic memory decline in AD is well investigated, the underlying mechanisms of semantic memory deterioration remain unclear. By disentangling the semantic memory impairments in AD, the present thesis aimed to improve early diagnosis and to find a biomarker for dementia. To this end, a study on healthy aging and a study with dementia patients were conducted investigating automatic and controlled semantic word retrieval. Besides the inclusion of AD patients, a group of participants diagnosed with semantic dementia (SD) – showing isolated semantic memory loss – was assessed. Automatic and controlled semantic word retrieval was measured with standard neuropsychological tests and by means of event-related potentials (ERP) recorded during the performance of a semantic priming (SP) paradigm. Special focus was directed to the N400 or N400-LPC (late positive component) complex, an ERP that is sensitive to the semantic word retrieval. In both studies, data driven topographical analyses were applied. Furthermore, in the patient study, the combination of the individual baseline cerebral blood flow (CBF) with the N400 topography of each participant was employed in order to relate altered functional electrophysiology to the pathophysiology of dementia. Results of the aging study revealed that the automatic semantic word retrieval remains stable during healthy aging, the N400-LPC complex showed a comparable topography in contrast to the young participants. Both patient groups showed automatic SP to some extent, but strikingly the ERP topographies were altered compared to healthy controls. Most importantly, the N400 was identified as a putative marker for dementia. In particular, the degree of the topographical N400 similarity was demonstrated to separate healthy elderly from demented patients. Furthermore, the marker was significantly related to baseline CBF reduction in brain areas relevant for semantic word retrieval. Summing up, the first major finding of the present thesis was that all groups showed semantic priming, but that the N400 topography differed significantly between healthy and demented elderly. The second major contribution was the identification of the N400 similarity as a putative marker for dementia. To conclude, the present thesis added evidence of preserved automatic processing during healthy aging. Moreover, a possible marker which might contribute to an improved diagnosis and lead consequently to a more effective treatment of dementia was presented and has to be further developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (ɡ − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor. This new, model-independent approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (ɡ − 2)μ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (g − 2) μ . We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to (g − 2) μ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. Such a model-independent Approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (g − 2)μ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A crucial link in preserving and protecting the future of our communities resides in maintaining the health and well being of our youth. While every member of the community owns an opinion regarding where to best utilize monies for prevention and intervention, the data to support such opinion is often scarce. In an effort to generate data-driven indices for community planning and action, the United Way of Comal County, Texas partnered with the University Of Texas - Houston Health Science Center, School Of Public Health to accomplish a county-specific needs assessment. A community-based participatory research emphasis utilizing the Mobilization for Action through Planning and Partnership (MAPP) format developed by the National Association of City and County Health Officials (NACCHO) was implemented to engage community members in identifying and addressing community priorities. The single greatest area of consensus and concern identified by community members was the health and well being of the youth population. Thus, a youth survey, targeting these specific areas of community concern, was designed, coordinated and administered to all 9-11th grade students in the county. 20% of the 3,698 completed surveys (72% response rate) were randomly selected for analysis. These 740 surveys were coded and scanned into an electronic survey database. Statistical analysis provided youth-reported data on the status of the multiple issues affecting the health and well being of the community's youth. These data will be reported back to the community stakeholders, as part of the larger Comal County Needs Assessment, for the purposes of community planning and action. Survey data will provide community planners with an awareness of the high risk behaviors and habit patterns amongst their youth. This knowledge will permit more effective targeting of the means for encouraging healthy behaviors and preventing the spread of disease. Further, the community-oriented, population-based nature of this effort will provide answers to questions raised by the community and will provide an effective launching pad for the development and implementation of targeted, preventive health strategies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Massive clinoptilolite authigenesis was observed at about 1105 meters below sea floor (mbsf) in lower Miocene wellcompacted carbonate periplatform sediments from the Great Bahama Bank [Ocean Drilling Program, ODP Leg 166, Site 1007]. The diagenetic assemblage comprises abundant zeolite crystallized within foraminifer tests and sedimentary matrix, as well as Mg smectites. In carbonate-rich deposits, the formation of the zeolite requires a supply of silica. Thus, the objective of the study is to determine the origin of the silica supply, its diagenetic evolution, and consequently the related implications on interpretation of the sedimentary record, in terms of local or global paleoceanographic change. For lack of evidence for any volcaniclastic input or traces of Si-enriched deep fluids circulation, an in situ biogenic source of silica is validated by isotopic data and chemical modeling for the formation of such secondary minerals in shallow-water carbonate sequences. Geochemical and strontium isotopic data clearly establish the marine signature of the diagenetic zeolite, as well as its contemporaneous formation with the carbonate deposition (Sr model ages of 19.6-23.2 Ma). The test of saturation for the pore fluids specifies the equilibrium state of the present mineralogical assemblage. Seawater-rock modeling specifies that clinoptilolite precipitates from the dissolution of biogenic silica, which reacts with clay minerals. The amount of silica (opal-A) involved in the reaction has to be significant enough, at least 10 wt.%, to account for the observed content of clinoptilolite occurring at the most zeolite-rich level. Modeling also shows that the observed amount of clinoptilolite (~19%) reflects an in situ and short-term reaction due to the high reactivity of primary biogenic silica (opal-A) until its complete depletion. The episodic occurrence of these well-lithified zeolite-rich levels is consistent with the occurrence of seismic reflectors, particularly the P2 seismic sequence boundary located at 1115 mbsf depth and dated as 23.2 Ma. The age range of most zeolitic sedimentary levels (biostratigraphic ages of 21.5-22 Ma) correlates well with that of the early Miocene glaciation Mi-1 and Mi-1a global events. Thus, the clinoptilolite occurrence in the shallow carbonate platform environment far from volcanogenic supply, or in other sensitive marine areas, is potentially a significant new proxy for paleoproductivity and oceanic global events, such as the Miocene events, which are usually recognized in deep-sea pelagic sediments and high latitude deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs represent major accumulations of calcium carbonate (CaCO3). The particularly labyrinthine network of reefs in Torres Strait, north of the Great Barrier Reef (GBR), has been examined in order to estimate their gross CaCO3 productivity. The approach involved a two-step procedure, first characterising and classifying the morphology of reefs based on a classification scheme widely employed on the GBR and then estimating gross CaCO3 productivity rates across the region using a regional census-based approach. This was undertaken by independently verifying published rates of coral reef community gross production for use in Torres Strait, based on site-specific ecological and morphological data. A total of 606 reef platforms were mapped and classified using classification trees. Despite the complexity of the maze of reefs in Torres Strait, there are broad morphological similarities with reefs in the GBR. The spatial distribution and dimensions of reef types across both regions are underpinned by similar geological processes, sea-level history in the Holocene and exposure to the same wind/wave energetic regime, resulting in comparable geomorphic zonation. However, the presence of strong tidal currents flowing through Torres Strait and the relatively shallow and narrow dimensions of the shelf exert a control on local morphology and spatial distribution of the reef platforms. A total amount of 8.7 million tonnes of CaCO3 per year, at an average rate of 3.7 kg CaCO3 m-2 yr-1 (G), were estimated for the studied area. Extrapolated production rates based on detailed and regional census-based approaches for geomorphic zones across Torres Strait were comparable to those reported elsewhere, particularly values for the GBR based on alkalinity-reduction methods. However, differences in mapping methodologies and the impact of reduced calcification due to global trends in coral reef ecological decline and changing oceanic physical conditions warrant further research. The novel method proposed in this study to characterise the geomorphology of reef types based on classification trees provides an objective and repeatable data-driven approach that combined with regional census-based approaches has the potential to be adapted and transferred to different coral reef regions, depicting a more accurate picture of interactions between reef ecology and geomorphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent development of in-situ monitoring devices, such as UV-spectrometers, makes the study of short-term stream chemistry variation relevant, especially the study of diurnal cycles, which are not yet fully understood. Our study is based on high-frequency data from an agricultural catchment (Studienlandschaft Schwingbachtal, Germany). We propose a novel approach, i.e. the combination of cluster analysis and Linear Discriminant Analysis, to mine from these data nitrate behavior patterns. As a result, we observe a seasonality of nitrate diurnal cycles, that differs from the most common cycle seasonality described in the literature, i.e. pre-dawn peaks in spring. Our cycles appear in summer and the maximum and minimum shift to a later time in late summer/autumn. This is observed both for water- and energy-limited years, thus potentially stressing the role of evapotranspiration. This concluding hypothesis on the role of evapotranspiration on nitrate stream concentration, which was obtained through data mining, broadens the perspective on the diurnal cycling of stream nitrate concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new Bayesian framework for automatically determining the position (location and orientation) of an uncalibrated camera using the observations of moving objects and a schematic map of the passable areas of the environment. Our approach takes advantage of static and dynamic information on the scene structures through prior probability distributions for object dynamics. The proposed approach restricts plausible positions where the sensor can be located while taking into account the inherent ambiguity of the given setting. The proposed framework samples from the posterior probability distribution for the camera position via data driven MCMC, guided by an initial geometric analysis that restricts the search space. A Kullback-Leibler divergence analysis is then used that yields the final camera position estimate, while explicitly isolating ambiguous settings. The proposed approach is evaluated in synthetic and real environments, showing its satisfactory performance in both ambiguous and unambiguous settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. In robotics a similar role has been played by modules that fit point cloud data to the superquadric family of shapes and its various extensions. We developed a model of shape tuning in AIP based on cosine tuning to superquadric parameters. However, the model did not fit the data well, and we also found that it was difficult to accurately reproduce these parameters using neural networks with the appropriate inputs (modelled on the caudal intraparietal area, CIP). The latter difficulty was related to the fact that there are large discontinuities in the superquadric parameters between very similar shapes. To address these limitations we adopted an alternative shape parameterization based on an Isomap nonlinear dimension reduction. The Isomap was built using gradients and curvatures of object surface depth. This alternative parameterization was low-dimensional (like superquadrics), but data-driven (similar to an alternative clustering approach that is also sometimes used in robotics) and lacked large discontinuities. Isomaps with 16 or more dimensions reproduced the AIP data fairly well. Moreover, we found that the Isomap parameters could be approximated from CIP-like input much more accurately than the superquadric parameters. We conclude that Isomaps, or perhaps alternative dimension reductions of CIP signals, provide a promising model of AIP tuning. We have now started to integrate our model with a robot hand, to explore the efficacy of Isomap shape reductions in grasp planning. Future work will consider dynamics of spike responses and integration with related visual and motor area models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesis propone el concepto y diseño de una arquitectura cognitiva para representación de conocimiento profesional especializado en clases de dominios relacionados con el mundo físico. Constituye una extensión de los trabajos de B.Chandrasekaran, potenciando el concepto de arquitectura basada en tareas genéricas propuesta por dicho autor. En base a la arquitectura propuesta, se ha desarrollado un entorno como herramienta de construcción de sistemas expertos de segunda generación, así como un lenguaje para programación cognitiva (DECON)- Dicho entorno, programado en lenguaje C sobre UNIX, ha sido utilizado para el desarrollo de un sistema para predicción de avenidas en la Cuenca Hidrográfica del Jucar, en el marco del proyecto SAIH. Primeramente, la tesis plantea el problema de la modelización del comportamiento de los sistemas físicos, reflejando las limitaciones de las formas clásicas de representación del conocimiento para abordar dicho problema, así como los principales enfoques más recientes basados en el concepto de arquitectura cognitiva y en las técnicas de simulación cualitativa. Se realiza después una síntesis de la arquitectura propuesta, a nivel del conocimiento, para detallar posteriormente su desarrollo a nivel simbólico y de implementación, así como el método general para la construcción de modelos sobre la arquitectura. Se muestra también un resumen de los principales aspectos del desarrollo de software. Finalmente, en forma de anejos, se presenta un caso de estudio, el sistema SIRAH (Sistema Inteligente de Razonamiento Hidrológico), junto con la gramática formal del lenguaje de soporte para la definición de modelos.---ABSTRACT---The thesis proposes the concept and design of a cognitive architecture for professional knowledge representation, specialized in domain classes related to the physical world. It is an extensión of the Chandrasekaran's work, improving the concept of Generic Task based architecture introduced by this author. Based on the proposed architecture, an environment has been developed, as a case of second generation building expert systems tool, as well as a language for cognitive programming (DECON). The environment, programmed in C lenguage on UNIX operating system, has been used to develop a system for flood prediction in the Jucar watershed, inside of the SAIH project. Firstly, the behavior modeling problem of physical systems is discussed, showing the limitations of the classical representations to tackle it, beside the most recent approaches based on cognitive architecture concepts and qualitative simulation technique. An overview of the architecture at the knowledge level is then made, being followed by its symbolic and implementation level description, as well as a general guideline for building models on top of the architecture. The main aspects of software development are also introduced. Finaly, as annexes, a case of study -the SIRAH system (Sistema Inteligente de RAzonamiento Hidrológico)- is introduced, along with the formal grammar of the support language for model definition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are witnessing a fundamental transformation in how Internet of Things (IoT) is having an impact on the experience users have with data-driven devices, smart appliances, and connected products. The experience of any place is commonly defined as the result of a series of user engagements with a surrounding place in order to carry out daily activities (Golledge, 2002). Knowing about users? experiences becomes vital to the process of designing a map. In the near future, a user will be able to interact directly with any IoT device placed in his surrounding place and very little is known on what kinds of interactions and experiences a map might offer (Roth, 2015). The main challenge is to develop an experience design process to devise maps capable of supporting different user experience dimensions such as cognitive, sensory-physical, affective, and social (Tussyadiah and Zach, 2012). For example, in a smart city of the future, the IoT devices allowing a multimodal interaction with a map could help tourists in the assimilation of their knowledge about points of interest (cognitive experience), their association of sounds and smells to these places (sensory-physical experience), their emotional connection to them (affective experience) and their relationships with other nearby tourists (social experience). This paper aims to describe a conceptual framework for developing a Mapping Experience Design (MXD) process for building maps for smart connected places of the future. Our MXD process is focussed on the cognitive dimension of an experience in which a person perceives a place as a "living entity" that uses and feeds through his experiences. We want to help people to undergo a meaningful experience of a place through mapping what is being communicated during their interactions with the IoT devices situated in this place. Our purpose is to understand how maps can support a person?s experience in making better decisions in real-time.