858 resultados para Data pre-processing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report is a detailed description of data processing of NOAA/MLML spectroradiometry data. It introduces the MLML_DBASE programs, describes the assembly of diverse data fues, and describes general algorithms and how individual routines are used. Definitions of data structures are presented in Appendices. [PDF contains 48 pages]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report outlines the NOAA spectroradiometer data processing system implemented by the MLML_DBASE programs. This is done by presenting the algorithms and graphs showing the effects of each step in the algorithms. [PDF contains 32 pages]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(PDF contains 57 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Commercially available software packages for IBM PC-compatibles are evaluated to use for data acquisition and processing work. Moss Landing Marine Laboratories (MLML) acquired computers since 1978 to use on shipboard data acquisition (Le. CTD, radiometric, etc.) and data processing. First Hewlett-Packard desktops were used then a transition to the DEC VAXstations, with software developed mostly by the author and others at MLML (Broenkow and Reaves, 1993; Feinholz and Broenkow, 1993; Broenkow et al, 1993). IBM PC were at first very slow and limited in available software, so they were not used in the early days. Improved technology such as higher speed microprocessors and a wide range of commercially available software made use of PC more reasonable today. MLML is making a transition towards using the PC for data acquisition and processing. Advantages are portability and available outside support.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genome wide association studies (GWAS) have identified several low-penetrance susceptibility alleles in chronic lymphocytic leukemia (CLL). Nevertheless, these studies scarcely study regions that are implicated in non-coding molecules such as microRNAs (miRNAs). Abnormalities in miRNAs, as altered expression patterns and mutations, have been described in CLL, suggesting their implication in the development of the disease. Genetic variations in miRNAs can affect levels of miRNA expression if present in pre-miRNAs and in miRNA biogenesis genes or alter miRNA function if present in both target mRNA and miRNA sequences. Therefore, the present study aimed to evaluate whether polymorphisms in pre-miRNAs, and/or miRNA processing genes contribute to predisposition for CLL. A total of 91 SNPs in 107 CLL patients and 350 cancer-free controls were successfully analyzed using TaqMan Open Array technology. We found nine statistically significant associations with CLL risk after FDR correction, seven in miRNA processing genes (rs3805500 and rs6877842 in DROSHA, rs1057035 in DICER1, rs17676986 in SND1, rs9611280 in TNRC6B, rs784567 in TRBP and rs11866002 in CNOT1) and two in pre-miRNAs (rs11614913 in miR196a2 and rs2114358 in miR1206). These findings suggest that polymorphisms in genes involved in miRNAs biogenesis pathway as well as in pre-miRNAs contribute to the risk of CLL. Large-scale studies are needed to validate the current findings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several research studies have been recently initiated to investigate the use of construction site images for automated infrastructure inspection, progress monitoring, etc. In these studies, it is always necessary to extract material regions (concrete or steel) from the images. Existing methods made use of material's special color/texture ranges for material information retrieval, but they do not sufficiently discuss how to find these appropriate color/texture ranges. As a result, users have to define appropriate ones by themselves, which is difficult for those who do not have enough image processing background. This paper presents a novel method of identifying concrete material regions using machine learning techniques. Under the method, each construction site image is first divided into regions through image segmentation. Then, the visual features of each region are calculated and classified with a pre-trained classifier. The output value determines whether the region is composed of concrete or not. The method was implemented using C++ and tested over hundreds of construction site images. The results were compared with the manual classification ones to indicate the method's validity.