820 resultados para Data classification
Resumo:
Les milieux humides remplissent plusieurs fonctions écologiques d’importance et contribuent à la biodiversité de la faune et de la flore. Même s’il existe une reconnaissance croissante sur l’importante de protéger ces milieux, il n’en demeure pas moins que leur intégrité est encore menacée par la pression des activités humaines. L’inventaire et le suivi systématique des milieux humides constituent une nécessité et la télédétection est le seul moyen réaliste d’atteindre ce but. L’objectif de cette thèse consiste à contribuer et à améliorer la caractérisation des milieux humides en utilisant des données satellites acquises par des radars polarimétriques en bande L (ALOS-PALSAR) et C (RADARSAT-2). Cette thèse se fonde sur deux hypothèses (chap. 1). La première hypothèse stipule que les classes de physionomies végétales, basées sur la structure des végétaux, sont plus appropriées que les classes d’espèces végétales car mieux adaptées au contenu informationnel des images radar polarimétriques. La seconde hypothèse stipule que les algorithmes de décompositions polarimétriques permettent une extraction optimale de l’information polarimétrique comparativement à une approche multipolarisée basée sur les canaux de polarisation HH, HV et VV (chap. 3). En particulier, l’apport de la décomposition incohérente de Touzi pour l’inventaire et le suivi de milieux humides est examiné en détail. Cette décomposition permet de caractériser le type de diffusion, la phase, l’orientation, la symétrie, le degré de polarisation et la puissance rétrodiffusée d’une cible à l’aide d’une série de paramètres extraits d’une analyse des vecteurs et des valeurs propres de la matrice de cohérence. La région du lac Saint-Pierre a été sélectionnée comme site d’étude étant donné la grande diversité de ses milieux humides qui y couvrent plus de 20 000 ha. L’un des défis posés par cette thèse consiste au fait qu’il n’existe pas de système standard énumérant l’ensemble possible des classes physionomiques ni d’indications précises quant à leurs caractéristiques et dimensions. Une grande attention a donc été portée à la création de ces classes par recoupement de sources de données diverses et plus de 50 espèces végétales ont été regroupées en 9 classes physionomiques (chap. 7, 8 et 9). Plusieurs analyses sont proposées pour valider les hypothèses de cette thèse (chap. 9). Des analyses de sensibilité par diffusiogramme sont utilisées pour étudier les caractéristiques et la dispersion des physionomies végétales dans différents espaces constitués de paramètres polarimétriques ou canaux de polarisation (chap. 10 et 12). Des séries temporelles d’images RADARSAT-2 sont utilisées pour approfondir la compréhension de l’évolution saisonnière des physionomies végétales (chap. 12). L’algorithme de la divergence transformée est utilisé pour quantifier la séparabilité entre les classes physionomiques et pour identifier le ou les paramètres ayant le plus contribué(s) à leur séparabilité (chap. 11 et 13). Des classifications sont aussi proposées et les résultats comparés à une carte existante des milieux humide du lac Saint-Pierre (14). Finalement, une analyse du potentiel des paramètres polarimétrique en bande C et L est proposé pour le suivi de l’hydrologie des tourbières (chap. 15 et 16). Les analyses de sensibilité montrent que les paramètres de la 1re composante, relatifs à la portion dominante (polarisée) du signal, sont suffisants pour une caractérisation générale des physionomies végétales. Les paramètres des 2e et 3e composantes sont cependant nécessaires pour obtenir de meilleures séparabilités entre les classes (chap. 11 et 13) et une meilleure discrimination entre milieux humides et milieux secs (chap. 14). Cette thèse montre qu’il est préférable de considérer individuellement les paramètres des 1re, 2e et 3e composantes plutôt que leur somme pondérée par leurs valeurs propres respectives (chap. 10 et 12). Cette thèse examine également la complémentarité entre les paramètres de structure et ceux relatifs à la puissance rétrodiffusée, souvent ignorée et normalisée par la plupart des décompositions polarimétriques. La dimension temporelle (saisonnière) est essentielle pour la caractérisation et la classification des physionomies végétales (chap. 12, 13 et 14). Des images acquises au printemps (avril et mai) sont nécessaires pour discriminer les milieux secs des milieux humides alors que des images acquises en été (juillet et août) sont nécessaires pour raffiner la classification des physionomies végétales. Un arbre hiérarchique de classification développé dans cette thèse constitue une synthèse des connaissances acquises (chap. 14). À l’aide d’un nombre relativement réduit de paramètres polarimétriques et de règles de décisions simples, il est possible d’identifier, entre autres, trois classes de bas marais et de discriminer avec succès les hauts marais herbacés des autres classes physionomiques sans avoir recours à des sources de données auxiliaires. Les résultats obtenus sont comparables à ceux provenant d’une classification supervisée utilisant deux images Landsat-5 avec une exactitude globale de 77.3% et 79.0% respectivement. Diverses classifications utilisant la machine à vecteurs de support (SVM) permettent de reproduire les résultats obtenus avec l’arbre hiérarchique de classification. L’exploitation d’une plus forte dimensionalitée par le SVM, avec une précision globale maximale de 79.1%, ne permet cependant pas d’obtenir des résultats significativement meilleurs. Finalement, la phase de la décomposition de Touzi apparaît être le seul paramètre (en bande L) sensible aux variations du niveau d’eau sous la surface des tourbières ouvertes (chap. 16). Ce paramètre offre donc un grand potentiel pour le suivi de l’hydrologie des tourbières comparativement à la différence de phase entre les canaux HH et VV. Cette thèse démontre que les paramètres de la décomposition de Touzi permettent une meilleure caractérisation, de meilleures séparabilités et de meilleures classifications des physionomies végétales des milieux humides que les canaux de polarisation HH, HV et VV. Le regroupement des espèces végétales en classes physionomiques est un concept valable. Mais certaines espèces végétales partageant une physionomie similaire, mais occupant un milieu différent (haut vs bas marais), ont cependant présenté des différences significatives quant aux propriétés de leur rétrodiffusion.
Resumo:
Les écologistes reconnaissent depuis longtemps que les organismes sont soutenus par le flux, l’emmagasinage et le renouvellement d’énergie et de matériel de l’écosystème, puisqu’ils sont nécessaires au métabolisme biologique et à la construction de biomasse. L’importance des organismes dans la régularisation des processus écosystémiques est maintenant de plus en plus considérée. Situé au centre des chaînes trophiques aquatiques, le zooplancton influence les flux d’énergie et de matériel dans les écosystèmes. Plusieurs de leurs caractéristiques sont connues comme étant de bons indicateurs de leur effet sur l’environnement, notamment leur taille, contenu corporel et taux métabolique. La plupart de ces caractéristiques peuvent être appelées « traits fonctionnels ». Alors que l’emploi des traits devient de plus en plus populaire en écologie des communautés aquatiques, peu ont su utiliser cette approche afin de concrètement lier la structure des communautés zooplanctoniques aux processus écosystémiques. Dans cette étude, nous avons colligé les données provenant d’une grande variété de littérature afin de construire une base de données sur les traits du zooplancton crustacé contribuant directement ou indirectement aux flux de C, N et P dans les écosystèmes. Notre méta-analyse a permis d’assembler plus de 9000 observations sur 287 espèces et d’identifier par le fait même ce qu’il manque à nos connaissances. Nous avons examiné une série de corrélations croisées entre 16 traits, dont 35 étaient significatives, et avons exploré les relations entre les unités taxonomiques de même qu’entre les espèces marines et d’eaux douces. Notre synthèse a entre autres révélé des patrons significativement différents entre le zooplancton marin et dulcicole quant à leur taux de respiration et leur allométrie (masse vs. longueur corporelle). Nous proposons de plus une nouvelle classification de traits liant les fonctions des organismes à celles de l’écosystème. Notre but est d’offrir une base de données sur les traits du zooplancton, des outils afin de mieux lier les organismes aux processus écosystémiques et de stimuler la recherche de patrons généraux et de compromis entre les traits.
Resumo:
Chaque jour, des décisions doivent être prises quant à la quantité d'hydroélectricité produite au Québec. Ces décisions reposent sur la prévision des apports en eau dans les bassins versants produite à l'aide de modèles hydrologiques. Ces modèles prennent en compte plusieurs facteurs, dont notamment la présence ou l'absence de neige au sol. Cette information est primordiale durant la fonte printanière pour anticiper les apports à venir, puisqu'entre 30 et 40% du volume de crue peut provenir de la fonte du couvert nival. Il est donc nécessaire pour les prévisionnistes de pouvoir suivre l'évolution du couvert de neige de façon quotidienne afin d'ajuster leurs prévisions selon le phénomène de fonte. Des méthodes pour cartographier la neige au sol sont actuellement utilisées à l'Institut de recherche d'Hydro-Québec (IREQ), mais elles présentent quelques lacunes. Ce mémoire a pour objectif d'utiliser des données de télédétection en micro-ondes passives (le gradient de températures de brillance en position verticale (GTV)) à l'aide d'une approche statistique afin de produire des cartes neige/non-neige et d'en quantifier l'incertitude de classification. Pour ce faire, le GTV a été utilisé afin de calculer une probabilité de neige quotidienne via les mélanges de lois normales selon la statistique bayésienne. Par la suite, ces probabilités ont été modélisées à l'aide de la régression linéaire sur les logits et des cartographies du couvert nival ont été produites. Les résultats des modèles ont été validés qualitativement et quantitativement, puis leur intégration à Hydro-Québec a été discutée.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
A new procedure for the classification of lower case English language characters is presented in this work . The character image is binarised and the binary image is further grouped into sixteen smaller areas ,called Cells . Each cell is assigned a name depending upon the contour present in the cell and occupancy of the image contour in the cell. A data reduction procedure called Filtering is adopted to eliminate undesirable redundant information for reducing complexity during further processing steps . The filtered data is fed into a primitive extractor where extraction of primitives is done . Syntactic methods are employed for the classification of the character . A decision tree is used for the interaction of the various components in the scheme . 1ike the primitive extraction and character recognition. A character is recognized by the primitive by primitive construction of its description . Openended inventories are used for including variants of the characters and also adding new members to the general class . Computer implementation of the proposal is discussed at the end using handwritten character samples . Results are analyzed and suggestions for future studies are made. The advantages of the proposal are discussed in detail .
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and popular tools used for classification and prediction in Data mining. Different rules extracted from the decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of observations into subsets, called clusters, which are useful in finding the different signs and symptoms (attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the decision tree and K-means algorithm is used for creating the clusters. By applying these classification techniques, LD in any child can be identified
Resumo:
A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions
Resumo:
Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.