934 resultados para Data anonymization and sanitization
Resumo:
Healthcare systems have assimilated information and communication technologies in order to improve the quality of healthcare and patient's experience at reduced costs. The increasing digitalization of people's health information raises however new threats regarding information security and privacy. Accidental or deliberate data breaches of health data may lead to societal pressures, embarrassment and discrimination. Information security and privacy are paramount to achieve high quality healthcare services, and further, to not harm individuals when providing care. With that in mind, we give special attention to the category of Mobile Health (mHealth) systems. That is, the use of mobile devices (e.g., mobile phones, sensors, PDAs) to support medical and public health. Such systems, have been particularly successful in developing countries, taking advantage of the flourishing mobile market and the need to expand the coverage of primary healthcare programs. Many mHealth initiatives, however, fail to address security and privacy issues. This, coupled with the lack of specific legislation for privacy and data protection in these countries, increases the risk of harm to individuals. The overall objective of this thesis is to enhance knowledge regarding the design of security and privacy technologies for mHealth systems. In particular, we deal with mHealth Data Collection Systems (MDCSs), which consists of mobile devices for collecting and reporting health-related data, replacing paper-based approaches for health surveys and surveillance. This thesis consists of publications contributing to mHealth security and privacy in various ways: with a comprehensive literature review about mHealth in Brazil; with the design of a security framework for MDCSs (SecourHealth); with the design of a MDCS (GeoHealth); with the design of Privacy Impact Assessment template for MDCSs; and with the study of ontology-based obfuscation and anonymisation functions for health data.
Resumo:
The key functional operability in the pre-Lisbon PJCCM pillar of the EU is the exchange of intelligence and information amongst the law enforcement bodies of the EU. The twin issues of data protection and data security within what was the EU’s third pillar legal framework therefore come to the fore. With the Lisbon Treaty reform of the EU, and the increased role of the Commission in PJCCM policy areas, and the integration of the PJCCM provisions with what have traditionally been the pillar I activities of Frontex, the opportunity for streamlining the data protection and data security provisions of the law enforcement bodies of the post-Lisbon EU arises. This is recognised by the Commission in their drafting of an amending regulation for Frontex , when they say that they would prefer “to return to the question of personal data in the context of the overall strategy for information exchange to be presented later this year and also taking into account the reflection to be carried out on how to further develop cooperation between agencies in the justice and home affairs field as requested by the Stockholm programme.” The focus of the literature published on this topic, has for the most part, been on the data protection provisions in Pillar I, EC. While the focus of research has recently sifted to the previously Pillar III PJCCM provisions on data protection, a more focused analysis of the interlocking issues of data protection and data security needs to be made in the context of the law enforcement bodies, particularly with regard to those which were based in the pre-Lisbon third pillar. This paper will make a contribution to that debate, arguing that a review of both the data protection and security provision post-Lisbon is required, not only in order to reinforce individual rights, but also inter-agency operability in combating cross-border EU crime. The EC’s provisions on data protection, as enshrined by Directive 95/46/EC, do not apply to the legal frameworks covering developments within the third pillar of the EU. Even Council Framework Decision 2008/977/JHA, which is supposed to cover data protection provisions within PJCCM expressly states that its provisions do not apply to “Europol, Eurojust, the Schengen Information System (SIS)” or to the Customs Information System (CIS). In addition, the post Treaty of Prüm provisions covering the sharing of DNA profiles, dactyloscopic data and vehicle registration data pursuant to Council Decision 2008/615/JHA, are not to be covered by the provisions of the 2008 Framework Decision. As stated by Hijmans and Scirocco, the regime is “best defined as a patchwork of data protection regimes”, with “no legal framework which is stable and unequivocal, like Directive 95/46/EC in the First pillar”. Data security issues are also key to the sharing of data in organised crime or counterterrorism situations. This article will critically analyse the current legal framework for data protection and security within the third pillar of the EU.
Resumo:
Scientific research is increasingly data-intensive, relying more and more upon advanced computational resources to be able to answer the questions most pressing to our society at large. This report presents findings from a brief descriptive survey sent to a sample of 342 leading researchers at the University of Washington (UW), Seattle, Washington in 2010 and 2011 as the first stage of the larger National Science Foundation project “Interacting with Cyberinfrastructure in the Face of Changing Science.” This survey assesses these researcher’s use of advanced computational resources, data, and software in their research. We present high-level findings that describe UW researchers’: demographics, interdisciplinarity, research groups, data use, software and computational use—including software development and use, data storage and transfer activities, and collaboration tools, and computing resources. These findings offer insights into the state of computational resources in use during this time period as well as offering a look at the data intensiveness of UW researchers.
Resumo:
The International Seabed Authority (ISA) regulates the activities related with the exploration and exploitation of seabed mineral resources in the Area, which are considered as the "common heritage of mankind" under the United Nations Convention on the Law of the Sea.The ISA has also the mandate to ensure the protection of the marine environment.The development of good practices for the annual reporting and data submission by Contractors is crucial for the ISA to comply with the sustainable development of the mineral marine resources. In 2015,the ISA issued a new template for reporting on exploration activities, which includes the definition of the format for all geophysical, geological and environmental data to be collected and analysed during exploration. The availability of reliable data contributes to improve the assessment of the ISA on the activities in the Area while promoting transparency, which is considered as a major principle of industry bestpractices.
Resumo:
In digital markets personal information is pervasively collected by firms. In the first chapter I study data ownership and product customization when there is exclusive access to non rival but excludable data about consumer preferences. I show that an incumbent firm does not have an incentive to sell an exclusively held dataset with a rival firm, but instead it has an incentive to trade a customizing technology with the other firm. In the second chapter I investigate the effects of consumer information on the intensity of competition. In a two dimensional model of product differentiation, firms use information on preferences to practice price discrimination. I contrast a full privacy and a no privacy benchmark with a regime in which firms are able to target consumers only partially. When data is partially informative, firms are always better-off with price discrimination and an exclusive access to user data is not necessarily a competition policy concern. From a consumer protection perspective, the policy recommendation is that the regulator should promote either no privacy or full privacy. In the third chapter I introduce a data broker that observes either only one or both dimensions of consumer information and sells this data to competing firms for price discrimination purposes. When the seller exogenously holds a partially informative dataset, an exclusive allocation arises. Instead, when the dataset held is fully informative, the data broker trades information non exclusively but each competitor acquires consumer data on a different dimension. When data collection is made endogenous, non exclusivity is robust if collection costs are not too high. The competition policy suggestion is that exclusivity should not be banned per se, but it is data differentiation in equilibrium that rises market power in competitive markets. Upstream competition is sufficient to ensure that both firms get access to consumer information.
Resumo:
The fast development of Information Communication Technologies (ICT) offers new opportunities to realize future smart cities. To understand, manage and forecast the city's behavior, it is necessary the analysis of different kinds of data from the most varied dataset acquisition systems. The aim of this research activity in the framework of Data Science and Complex Systems Physics is to provide stakeholders with new knowledge tools to improve the sustainability of mobility demand in future cities. Under this perspective, the governance of mobility demand generated by large tourist flows is becoming a vital issue for the quality of life in Italian cities' historical centers, which will worsen in the next future due to the continuous globalization process. Another critical theme is sustainable mobility, which aims to reduce private transportation means in the cities and improve multimodal mobility. We analyze the statistical properties of urban mobility of Venice, Rimini, and Bologna by using different datasets provided by companies and local authorities. We develop algorithms and tools for cartography extraction, trips reconstruction, multimodality classification, and mobility simulation. We show the existence of characteristic mobility paths and statistical properties depending on transport means and user's kinds. Finally, we use our results to model and simulate the overall behavior of the cars moving in the Emilia Romagna Region and the pedestrians moving in Venice with software able to replicate in silico the demand for mobility and its dynamic.
Resumo:
In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources.
Resumo:
Following the approval of the 2030 Agenda for Sustainable Development in 2015, sustainability became a hotly debated topic. In order to build a better and more sustainable future by 2030, this agenda addressed several global issues, including inequality, climate change, peace, and justice, in the form of 17 Sustainable Development Goals (SDGs), that should be understood and pursued by nations, corporations, institutions, and individuals. In this thesis, we researched how to exploit and integrate Human-Computer Interaction (HCI) and Data Visualization to promote knowledge and awareness about SDG 8, which wants to encourage lasting, inclusive, and sustainable economic growth, full and productive employment, and decent work for all. In particular, we focused on three targets: green economy, sustainable tourism, employment, decent work for all, and social protection. The primary goal of this research is to determine whether HCI approaches may be used to create and validate interactive data visualization that can serve as helpful decision-making aids for specific groups and raise their knowledge of public-interest issues. To accomplish this goal, we analyzed four case studies. In the first two, we wanted to promote knowledge and awareness about green economy issues: we investigated the Human-Building Interaction inside a Smart Campus and the dematerialization process inside a University. In the third, we focused on smart tourism, investigating the relationship between locals and tourists to create meaningful connections and promote more sustainable tourism. In the fourth, we explored the industry context to highlight sustainability policies inside well-known companies. This research focuses on the hypothesis that interactive data visualization tools can make communities aware of sustainability aspects related to SDG8 and its targets. The research questions addressed are two: "how to promote awareness about SDG8 and its targets through interactive data visualizations?" and "to what extent are these interactive data visualizations effective?".
Resumo:
The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.
Resumo:
The dissertation explores the intersections between the temporalities of migration management and border-crossers’ temporalities. First, I analyze the relation between acceleration and (non)knowledge production by focusing on the “accelerated procedures” for asylum. These procedures are applied to people whose asylum applications are deemed as suspicious and likely to be rejected. I argue that the shortened timeframes shaping these procedures are a tool for hindering asylum seekers’ possibilities to collect and produce evidence supporting their cases, eventually facilitating and speeding up their removal for Member States’ territory. Second, I analyze the encounters between migration management and border-crossers during the identification practices carried out the Hotspots and during the asylum process in terms of “temporal collisions”. I develop the notion of “hijacked knowledge” to illustrate how these “temporal collisions” negatively affect border-crossers’ possibilities of action, by producing a significant lack of knowledge and awareness about the procedures to which they are subjected and their temporal implications. With the concept of “reactive calibration”, on the other hand, I suggest that once migrants become aware of the temporalities of control, they try to appropriate them by aligning their bodies, narrations and identities to those temporalities. The third part of the dissertation describes the situated intervention developed as part of my ethnographic activity. Drawing on participatory design, design justice and STS making and doing, I designed a role-playing game - My documents, check them out - seeking to involve border-crossers in the re-design of the categories usually deployed in migration management.
Resumo:
The increasing number of Resident Space Objects (RSOs) is a threat to spaceflight operations. Conjunction Data Messages (CDMs) are sent to satellite operators to warn for possible future collision and their probabilities. The research project described herein pushed forward an algorithm that is able to update the collision probability directly on-board starting from CDMs and the state vector of the hosting satellite which is constantly updated thanks to an onboard GNSS receiver. A large set of methods for computing the collision probability was analyzed in order to find the best ones for this application. The selected algorithm was then tested to assess and improve its performance. Finally, parts of the algorithm and external software were implemented on a Raspberry Pi 3B+ board to demonstrate the compatibility of this approach with computational resources similar to those typically available onboard modern spacecraft.
Resumo:
The increasing number of extreme rainfall events, combined with the high population density and the imperviousness of the land surface, makes urban areas particularly vulnerable to pluvial flooding. In order to design and manage cities to be able to deal with this issue, the reconstruction of weather phenomena is essential. Among the most interesting data sources which show great potential are the observational networks of private sensors managed by citizens (crowdsourcing). The number of these personal weather stations is consistently increasing, and the spatial distribution roughly follows population density. Precisely for this reason, they perfectly suit this detailed study on the modelling of pluvial flood in urban environments. The uncertainty associated with these measurements of precipitation is still a matter of research. In order to characterise the accuracy and precision of the crowdsourced data, we carried out exploratory data analyses. A comparison between Netatmo hourly precipitation amounts and observations of the same quantity from weather stations managed by national weather services is presented. The crowdsourced stations have very good skills in rain detection but tend to underestimate the reference value. In detail, the accuracy and precision of crowd- sourced data change as precipitation increases, improving the spread going to the extreme values. Then, the ability of this kind of observation to improve the prediction of pluvial flooding is tested. To this aim, the simplified raster-based inundation model incorporated in the Saferplaces web platform is used for simulating pluvial flooding. Different precipitation fields have been produced and tested as input in the model. Two different case studies are analysed over the most densely populated Norwegian city: Oslo. The crowdsourced weather station observations, bias-corrected (i.e. increased by 25%), showed very good skills in detecting flooded areas.
Resumo:
There are many natural events that can negatively affect the urban ecosystem, but weather-climate variations are certainly among the most significant. The history of settlements has been characterized by extreme events like earthquakes and floods, which repeat themselves at different times, causing extensive damage to the built heritage on a structural and urban scale. Changes in climate also alter various climatic subsystems, changing rainfall regimes and hydrological cycles, increasing the frequency and intensity of extreme precipitation events (heavy rainfall). From an hydrological risk perspective, it is crucial to understand future events that could occur and their magnitude in order to design safer infrastructures. Unfortunately, it is not easy to understand future scenarios as the complexity of climate is enormous. For this thesis, precipitation and discharge extremes were primarily used as data sources. It is important to underline that the two data sets are not separated: changes in rainfall regime, due to climate change, could significantly affect overflows into receiving water bodies. It is imperative that we understand and model climate change effects on water structures to support the development of adaptation strategies. The main purpose of this thesis is to search for suitable water structures for a road located along the Tione River. Therefore, through the analysis of the area from a hydrological point of view, we aim to guarantee the safety of the infrastructure over time. The observations made have the purpose to underline how models such as a stochastic one can improve the quality of an analysis for design purposes, and influence choices.
Resumo:
Caribbean census microdata are not easily accessible to researchers. Although there are well-established and commonly used procedures technical, administrative and legal which are used to disseminate anonymized census microdata to researchers, they have not been widely used in the Caribbean. The small size of Caribbean countries makes anonymization relatively more difficult and standard methods are not always directly applicable. This study reviews commonly used methods of disseminating census microdata and considers their applicability to the Caribbean. It demonstrates the application of statistical disclosure control methods using the census datasets of Grenada and Trinidad and Tobago and considers various possible designs of microdata release file in terms of disclosure risk and utility to researchers. It then considers how various forms of microdata dissemination: public use files, licensed use files, remote data access and secure data laboratories could be used to disseminate census microdata. It concludes that there is scope for a substantial expansion of access to Caribbean census microdata and that through collaboration with international organisations and data archives, this can be achieved with relatively little burden on statistical offices.
Resumo:
Background: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. Methods/Principal Findings: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of ""what if'' situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. Conclusion/Significance: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.