915 resultados para Dark chocolate
Resumo:
After decades of successful hot big-bang paradigm, cosmology still lacks a framework in which the early inflationary phase of the universe smoothly matches the radiation epoch and evolves to the present “quasi” de Sitter spacetime. No less intriguing is that the current value of the effective vacuum energy density is vastly smaller than the value that triggered inflation. In this paper, we propose a new class of cosmologies capable of overcoming, or highly alleviating, some of these acute cosmic puzzles. Powered by a decaying vacuum energy density, the spacetime emerges from a pure nonsingular de Sitter vacuum stage, “gracefully” exits from inflation to a radiation phase followed by dark matter and vacuum regimes, and, finally, evolves to a late-time de Sitter phase.
Resumo:
The annihilation of weakly interacting massive particles (WIMPs), accumulated in gravitational potentials (e.g., the core of the Earth, the Sun or the Galactic halo) would lead to neutrino production. This thesis investigates the possibility of searching for WIMPs in the form of the lightest supersymmetric particle (neutralino) trapped in the Sun using the AMANDA-II neutrino telescope. AMANDA-II is a large Cherenkov detector located deep in the ice at the geographical South Pole. The presented work is based on data taken during the year 2001. An analysis optimized to search for the neutralino-induced flux from the Sun has been developed. The observation of no excess with respect to the expected atmospheric neutrino background has been interpreted as an upper limit on the neutralino annihilation rate in the Sun and on the neutralino-induced muon flux in the vicinity of the detector.
Resumo:
The nature of the dark matter in the Universe is one of the greatest mysteries in modern astronomy. The neutralino is a nonbaryonic dark matter candidate in minimal supersymmetric extensions to the standard model of particle physics. If the dark matter halo of our galaxy is made up of neutralinos some would become gravitationally trapped inside massive bodies like the Earth. Their pair-wise annihilation produces neutrinos that can be detected by neutrino experiments looking in the direction of the centre of the Earth. The AMANDA neutrino telescope, currently the largest in the world, consists of an array of light detectors buried deep in the Antarctic glacier at the geographical South Pole. The extremely transparent ice acts as a Cherenkov medium for muons passing the array and using the timing information of detected photons it is possible to reconstruct the muon direction. A search has been performed for nearly vertically upgoing neutrino induced muons with AMANDA-B10 data taken over the three year period 1997-99. No excess above the atmospheric neutrino background expectation was found. Upper limits at the 90 % confidence level has been set on the annihilation rate of neutralinos at the centre of the Earth and on the muon flux induced by neutrinos created by the annihilation products.
Resumo:
There is very strong evidence that ordinary matter in the Universe is outweighed by almost ten times as much so-called dark matter. Dark matter does neither emit nor absorb light and we do not know what it is. One of the theoretically favoured candidates is a so-called neutralino from the supersymmetric extension of the Standard Model of particle physics. A theoretical calculation of the expected cosmic neutralino density must include the so-called coannihilations. Coannihilations are particle processes in the early Universe with any two supersymmetric particles in the initial state and any two Standard Model particles in the final state. In this thesis we discuss the importance of these processes for the calculation of the relic density. We will go through some details in the calculation of coannihilations with one or two so-called sfermions in the initial state. This includes a discussion of Feynman diagrams with clashing arrows, a calculation of colour factors and a discussion of ghosts in non-Abelian field theory. Supersymmetric models contain a large number of free parameters on which the masses and couplings depend. The requirement, that the predicted density of cosmic neutralinos must agree with the density observed for the unknown dark matter, will constrain the parameters. Other constraints come from experiments which are not related to cosmology. For instance, the supersymmetric loop contribution to the rare b -> sγ decay should agree with the measured branching fraction. The principles of the calculation of the rare decay are discussed in this thesis. Also on-going and planned searches for cosmic neutralinos can constrain the parameters. In one of the accompanying papers in the thesis we compare the detection prospects for several current and future searches for neutralino dark matter.
Resumo:
Se han eliminado las páginas en blanco
Resumo:
[EN]The dark ocean, the waters below 200 m depth, comprises about 95% of the volume of the ocean, but its contribution to the metabolism of the ocean is poorly quantified. Here we show that the respiration rate of microplankton declines exponentially at a rate of 0.53 km−1 in the dark ocean, and is enhanced at the interface between the mesopelagic and the abyssal layers (1,000–2,000 m). The respiratory CO2 production in the dark ocean, estimated at 20 to 33.3 Gt C yr−1, renders it a major component of the carbon flux in the biosphere.
Resumo:
[EN] It is generally assumed that sinking particulate organic carbon (POC) constitutes the main source of organic carbon supply to the deep ocean's food webs. However, a major discrepancy between the rates of sinking POC supply (collected with sediment traps) and the prokaryotic organic carbon demand (the total amount of carbon required to sustain the heterotrophic metabolism of the prokaryotes; i.e., production plus respiration, PCD) of deep-water communities has been consistently reported for the dark realm of the global ocean. While the amount of sinking POC flux declines exponentially with depth, the concentration of suspended, buoyant non-sinking POC (nsPOC; obtained with oceanographic bottles) exhibits only small variations with depth in the (sub)tropical Northeast Atlantic. Based on available data for the North Atlantic we show here that the sinking POC flux would contribute only 4–12% of the PCD in the mesopelagic realm (depending on the primary production rate in surface waters). The amount of nsPOC potentially available to heterotrophic prokaryotes in the mesopelagic realm can be partly replenished by dark dissolved inorganic carbon fixation contributing between 12% to 72% to the PCD daily. Taken together, there is evidence that the mesopelagic microheterotrophic biota is more dependent on the nsPOC pool than on the sinking POC supply. Hence, the enigmatic major mismatch between the organic carbon demand of the deep-water heterotrophic microbiota and the POC supply rates might be substantially smaller by including the potentially available nsPOC and its autochthonous production in oceanic carbon cycling models.
Resumo:
I have studied entropy profiles obtained in a sample of 24 X-ray objects at high redshift retrieved from the Chandra archive. I have discussed the scaling properties of the entropy S, the correlation between metallicity Z and S, the profiles of the temperature of the gas, Tgas, and performed a comparison between the dark matter 'temperature' and Tgas in order to constrain the non-gravitational processes which affect the thermal history of the gas. Furthermore I have studied the scaling relations between the X-ray quantities and Sunyaev Zel'dovich measurements. I have observed that X-ray laws are steeper than the relations predicted from the adiabatic model. These deviations from expectations based on self-similarity are usually interpreted in terms of feedback processes leading to non-gravitational gas heating, and suggesting a scenario in which the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than the expectations from self-similar model. I have also investigated a Bayesian X-ray and Sunyaev Zel'dovich analysis, which allows to study the external regions of the clusters well beyond the volumes resolved with X-ray observations (1/3-1/2 of the virial radius), to measure the deprojected physical cluster properties, like temperature, density, entropy, gas mass and total mass up to the virial radius.
Resumo:
The present study aims at analyzing how dark humour as a cinematic genre travels cross-culturally through a specific mode of audiovisual translation, i.e. dubbing. In particular, it takes into consideration the processes involved in dubbing humour from English into Italian as observed in the English- and Italian-language versions of ten British and American dark comedies from the 1940s to the 2000s. In an attempt to identify some of the main mechanisms of the dark humour genre, the humorous content of the films was analyzed in terms of the elements on which specific scenes are based, mainly the non-verbal and verbal components. In the cases in which verbal elements were involved, i.e. the examples of verbally expressed humour, the analysis was concerned with whether they were adapted into Italian and to what effect. Quantification of the different kinds of dark humour revealed that in the sample of dark comedies verbal dark humour had a higher frequency (85.3%) than non-verbal dark humour (14.7%), which partially disconfirmed the first part of the research hypothesis. However, the significance of contextual elements in the conveying of dark humour, both in the form of Nsp VEH (54.31%) and V-V (V+VE) (21.68%), provided support for the hypothesis that, even when expressed verbally, dark humour is more closely linked to context-based rather than purely linguistic humour (4.9%). The second part of the analysis was concerned with an investigation of the strategies adopted for the translation of verbal dark humour elements from the SL (English) into the TL (Italian) through the filter of dubbing. Four translational strategies were identified as far as the rendering of verbal dark humour is concerned: i) complete omission; ii) weakening; iii) close rendering; and iv) increased effect. Complete omission was found to be the most common among these strategies, with 80.9% of dark humour examples being transposed in a way that kept the ST’s function substantially intact. Weakening of darkly humorous lines was applied in 12% of cases, whereas increased effect accounted for 4.6% and complete omission for 2.5%. The fact that for most examples of Nsp VEH (84.9%) and V-AC (V+VE) (91.4%) a close rendering effect was observed and that 12 out of 21 examples of V-AC (PL) (a combined 57%) were either omitted or weakened seemed to confirm, on the one hand, the complexity of the translation process required by cases of V-AC (PL) and V-AC (CS). On the other hand, as suggested in the second part of the research hypothesis, the data might be interpreted as indicating that lesser effort on the translator/adaptor’s part is involved in the adaptation of V-AC (Nsp VEH) and V-V (V+VE). The issue of the possible censorial intervention undergone by examples of verbal dark humour in the sample still remains unclear.
Resumo:
While imperfect information games are an excellent model of real-world problems and tasks, they are often difficult for computer programs to play at a high level of proficiency, especially if they involve major uncertainty and a very large state space. Kriegspiel, a variant of chess making it similar to a wargame, is a perfect example: while the game was studied for decades from a game-theoretical viewpoint, it was only very recently that the first practical algorithms for playing it began to appear. This thesis presents, documents and tests a multi-sided effort towards making a strong Kriegspiel player, using heuristic searching, retrograde analysis and Monte Carlo tree search algorithms to achieve increasingly higher levels of play. The resulting program is currently the strongest computer player in the world and plays at an above-average human level.
Resumo:
In this work we investigate the influence of dark energy on structure formation, within five different cosmological models, namely a concordance $\Lambda$CDM model, two models with dynamical dark energy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) and two extended quintessence models (EQp and EQn) where the quintessence scalar field interacts non-minimally with gravity (scalar-tensor theories). We adopted for all models the normalization of the matter power spectrum $\sigma_{8}$ to match the CMB data. For each model, we perform hydrodynamical simulations in a cosmological box of $(300 \ {\rm{Mpc}} \ h^{-1})^{3}$ including baryons and allowing for cooling and star formation. We find that, in models with dynamical dark energy, the evolving cosmological background leads to different star formation rates and different formation histories of galaxy clusters, but the baryon physics is not affected in a relevant way. We investigate several proxies for the cluster mass function based on X-ray observables like temperature, luminosity, $M_{gas}$, and $Y_{X}$. We confirm that the overall baryon fraction is almost independent of the dark energy models within few percentage points. The same is true for the gas fraction. This evidence reinforces the use of galaxy clusters as cosmological probe of the matter and energy content of the Universe. We also study the $c-M$ relation in the different cosmological scenarios, using both dark matter only and hydrodynamical simulations. We find that the normalization of the $c-M$ relation is directly linked to $\sigma_{8}$ and the evolution of the density perturbations for $\Lambda$CDM, RP and SUGRA, while for EQp and EQn it depends also on the evolution of the linear density contrast. These differences in the $c-M$ relation provide another way to use galaxy clusters to constrain the underlying cosmology.