397 resultados para DOXORUBICIN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could have more general implications for many physiological membrane-related functions that are relevant for health and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The value of adjuvant tamoxifen after chemotherapy for premenopausal women with breast cancer has not been adequately assessed. PATIENTS AND METHODS: Between 1993 and 1999, International Breast Cancer Study Group Trial 13-93 enrolled 1,246 assessable premenopausal women with axillary node-positive, operable breast cancer. All patients received chemotherapy (cyclophosphamide plus either doxorubicin or epirubicin for four courses followed by immediate or delayed classical cyclophosphamide, methotrexate, and fluorouracil for three courses), which was followed by either tamoxifen (20 mg daily) for 5 years or no further treatment. The primary end point was disease-free survival (DFS). Tumors were classified as estrogen receptor (ER) -positive (n = 735, 59%) if immunohistochemical (IHC) or ligand-binding assays (LBA) were clearly positive. The ER-negative group included all other tumors (n = 511, 41%). A subset of the ER-negative group was defined as ER absent (n = 108, 9%) if IHC staining was none or if the LBA result was 0 fmol/mg cytosol protein. The median follow-up time was 7 years. RESULTS: Tamoxifen improved DFS in the ER-positive cohort (hazard ratio [HR] for tamoxifen v no tamoxifen = 0.59; 95% CI, 0.46 to 0.75; P < .0001) but not in the ER-negative cohort (HR = 1.02; 95% CI, 0.77 to 1.35; P = .89). Tamoxifen had a detrimental effect on patients with ER-absent tumors compared with no tamoxifen in an unplanned exploratory analysis (HR = 2.10; 95% CI, 1.03 to 4.29; P = .04). Patients with ER-positive tumors who achieved chemotherapy-induced amenorrhea had a significantly improved outcome (HR for amenorrhea v no amenorrhea = 0.61; 95% CI, 0.44 to 0.86; P = .004), whether or not they received tamoxifen. CONCLUSION: Tamoxifen after adjuvant chemotherapy significantly improved treatment outcome in premenopausal patients with endocrine-responsive disease, but its use as adjuvant therapy for patients with ER-negative tumors is not recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site-specific delivery of anticancer agents to tumors represents a promising therapeutic strategy because it increases efficacy and reduces toxicity to normal tissues compared with untargeted drugs. Sterically stabilized immunoliposomes (SIL), guided by antibodies that specifically bind to well internalizing antigens on the tumor cell surface, are effective nanoscale delivery systems capable of accumulating large quantities of anticancer agents at the tumor site. The epithelial cell adhesion molecule (EpCAM) holds major promise as a target for antibody-based cancer therapy due to its abundant expression in many solid tumors and its limited distribution in normal tissues. We generated EpCAM-directed immunoliposomes by covalently coupling the humanized single-chain Fv antibody fragment 4D5MOCB to the surface of sterically stabilized liposomes loaded with the anticancer agent doxorubicin. In vitro, the doxorubicin-loaded immunoliposomes (SIL-Dox) showed efficient cell binding and internalization and were significantly more cytotoxic against EpCAM-positive tumor cells than nontargeted liposomes (SL-Dox). In athymic mice bearing established human tumor xenografts, pharmacokinetic and biodistribution analysis of SIL-Dox revealed long circulation times in the blood with a half-life of 11 h and effective time-dependent tumor localization, resulting in up to 15% injected dose per gram tissue. These favorable pharmacokinetic properties translated into potent antitumor activity, which resulted in significant growth inhibition (compared with control mice), and was more pronounced than that of doxorubicin alone and nontargeted SL-Dox at low, nontoxic doses. Our data show the promise of EpCAM-directed nanovesicular drug delivery for targeted therapy of solid tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The purpose of this analysis was to investigate trastuzumab-associated cardiac adverse effects in breast cancer patients after completion of (neo)adjuvant chemotherapy with or without radiotherapy. PATIENTS AND METHODS: The Herceptin Adjuvant (HERA) trial is a three-group, multicenter, open-label randomized trial that compared 1 or 2 years of trastuzumab given once every 3 weeks with observation in patients with HER-2-positive breast cancer. Only patients who after completion of (neo)adjuvant chemotherapy with or without radiotherapy had normal left ventricular ejection fraction (LVEF > or = 55%) were eligible. A repeat LVEF assessment was performed in case of cardiac dysfunction. RESULTS: Data were available for 1,693 patients randomly assigned to 1 year trastuzumab and 1,693 patients randomly assigned to observation. The incidence of trastuzumab discontinuation due to cardiac disorders was low (4.3%). The incidence of cardiac end points was higher in the trastuzumab group compared with observation (severe congestive heart failure [CHF], 0.60% v 0.00%; symptomatic CHF, 2.15% v 0.12%; confirmed significant LVEF drops, 3.04% v 0.53%). Most patients with cardiac dysfunction recovered in fewer than 6 months. Patients with trastuzumab-associated cardiac dysfunction were treated with higher cumulative doses of doxorubicin (287 mg/m(2) v 257 mg/m(2)) or epirubicin (480 mg/m(2) v 422 mg/m(2)) and had a lower screening LVEF and a higher body mass index. CONCLUSION: Given the clear benefit in disease-free survival, the low incidence of cardiac adverse events, and the suggestion that cardiac dysfunction might be reversible, adjuvant trastuzumab should be considered for treatment of breast cancer patients who fulfill the HERA trial eligibility criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GOAL OF THE WORK: Anemia is a common side effect of chemotherapy. Limited information exists about its incidence and risk factors. The objective of this study was to evaluate the incidence of anemia and risk factors for anemia occurrence in patients with early breast cancer who received adjuvant chemotherapy. MATERIALS AND METHODS: We evaluated risk factors for anemia in pre- and post/perimenopausal patients with lymph node-positive early breast cancer treated with adjuvant chemotherapy in two randomized trials. All patients received four cycles of doxorubicin and cyclophosphamide (AC) followed by three cycles of cyclophosphamide, methotrexate, fluorouracil (CMF). Anemia incidence was related to baseline risk factors. Multivariable analysis used logistic and Cox regression. MAIN RESULTS: Among the 2,215 available patients, anemia was recorded in 11% during adjuvant chemotherapy. Grade 2 and 3 anemia occurred in 4 and 1% of patients, respectively. Pretreatment hemoglobin and white blood cells (WBC) were significant predictors of anemia. Adjusted odds ratios (logistic regression) comparing highest versus lowest quartiles were 0.18 (P < 0.0001) for hemoglobin and 0.52 (P = 0.0045) for WBC. Age, surgery type, platelets, body mass index, and length of time from surgery to chemotherapy were not significant predictors. Cox regression results looking at time to anemia were similar. CONCLUSIONS: Moderate or severe anemia is rare among patients treated with AC followed by CMF. Low baseline hemoglobin and WBC are associated with a higher risk of anemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We isolated a stem cell subpopulation from human lung cancer A549 cells using FACS/Hoechst 33342. This side population (SP), which comprised 24% of the total cell population, totally disappeared after treatment with the selective ABCG 2 inhibitor fumitremorgin C. In a repopulation study, isolated SP and non-SP cells were each able to generate a heterogeneous population of SP and non-SP cells, but this repopulation occurred more rapidly in SP cells than non-SP. An MTT assay and cell cycle distribution analysis reveal a similar profile between SP and non-SP groups. However, in the presence of doxorubicin (DOX) and methotrexate (MTX), SP cells showed significantly lower Annexin V staining when compared to non-SP cells. Taken together, these results demonstrate that SP cells have an active regeneration capacity and high anti-apoptotic activity compared with non-SP cells. Furthermore, our GeneChip data revealed a heightened mRNA expression of ABCG2 and ABCC2 in SP cells. Overall these data explain why the SP of A549 has a unique ability to resist DOX and MTX treatments. Therefore, we suggest that the expression of the ABCG2 transporter plays an important role in the multidrug resistance phenotype of A549 SP cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OX7 monoclonal antibody F((ab')2) fragments directed against Thy1.1 antigen can be used for drug targeting by coupling to the surface of drug-loaded liposomes. Such OX7-conjugated immunoliposomes (OX7-IL) were used recently for drug delivery to rat glomerular mesangial cells, which are characterized by a high level of Thy1.1 antigen expression. In the present study, the relationship between OX7-IL tissue distribution and target Thy1.1 antigen localization in different organs in rat was investigated. Western blot and immunohistofluorescence analysis revealed a very high Thy1.1 expression in brain cortex and striatum, thymus and renal glomeruli. Moderate Thy1.1 levels were observed in the collecting ducts of kidney, lung tissue and spleen. Thy1.1 was not detected in liver and heart. There was a poor correlation between Thy1.1 expression levels and organ distribution of fluorescence- or (14)C-labeled OX7-IL. The highest overall organ density of OX7-IL was observed in the spleen, followed by lung, liver and kidney. Heart and brain remained negative. With respect to intra-organ distribution, a localized and distinct signal was observed in renal glomerular mesangial cells only. As a consequence, acute pharmacological (i.e. toxic) effects of doxorubicin-loaded OX7-IL were limited to renal glomeruli. The competition with unbound OX7 monoclonal antibody F((ab')2) fragments demonstrated that the observed tissue distribution and acute pharmacological effects of OX7-IL were mediated specifically by the conjugated OX7 antibody. It is concluded that both the high target antigen density and the absence of endothelial barriers are needed to allow for tissue-specific accumulation and pharmacological effects of OX7-IL. The liposomal drug delivery strategy used is therefore specific toward renal glomeruli and can be expected to reduce the risk of unwanted side effects in other tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene-directed enzyme prodrug therapy is a form of cancer therapy in which delivery of a gene that encodes an enzyme is able to convert a prodrug, a pharmacologically inactive molecule, into a potent cytotoxin. Currently delivery of gene and prodrug is a two-step process. Here, we propose a one-step method using polymer nanocarriers to deliver prodrug, gene and cytotoxic drug simultaneously to malignant cells. Prodrugs acyclovir, ganciclovir and 5-doxifluridine were used to directly to initiate ring-opening polymerization of epsilon-caprolactone, forming a hydrophobic prodrug-tagged poly(epsilon-caprolactone) which was further grafted with hydrophilic polymers (methoxy poly(ethylene glycol), chitosan or polyethylenemine) to form amphiphilic copolymers for micelle formation. Successful synthesis of copolymers and micelle formation was confirmed by standard analytical means. Conversion of prodrugs to their cytotoxic forms was analyzed by both two-step and one-step means i.e. by first delivering gene plasmid into cell line HT29 and then challenging the cells with the prodrug-tagged micelle carriers and secondly by complexing gene plasmid onto micelle nanocarriers and delivery gene and prodrug simultaneously to parental HT29 cells. Anticancer effectiveness of prodrug-tagged micelles was further enhanced by encapsulating chemotherapy drugs doxorubicin or SN-38. Viability of colon cancer cell line HT29 was significantly reduced. Furthermore, in an effort to develop a stealth and targeted carrier, CD47-streptavidin fusion protein was attached onto the micelle surface utilizing biotin-streptavidin affinity. CD47, a marker of self on the red blood cell surface, was used for its antiphagocytic efficacy, results showed that micelles bound with CD47 showed antiphagocytic efficacy when exposed to J774A.1 macrophages. Since CD47 is not only an antiphagocytic ligand but also an integrin associated protein, it was used to target integrin alpha(v)beta(3), which is overexpressed on tumor-activated neovascular endothelial cells. Results showed that CD47-tagged micelles had enhanced uptake when treated to PC3 cells which have high expression of alpha(v)beta(3). The synthesized multifunctional polymeric micelle carriers developed could offer a new platform for an innovative cancer therapy regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific delivery to tumors and efficient cellular uptake of nucleic acids remain major challenges for gene-targeted cancer therapies. Here we report the use of a designed ankyrin repeat protein (DARPin) specific for the epithelial cell adhesion molecule (EpCAM) as a carrier for small interfering RNA (siRNA) complementary to the bcl-2 mRNA. For charge complexation of the siRNA, the DARPin was fused to a truncated human protamine-1 sequence. To increase the cell binding affinity and the amount of siRNA delivered into cells, DARPin dimers were generated and used as fusion proteins with protamine. All proteins expressed well in Escherichia coli in soluble form, yet, to remove tightly bound bacterial nucleic acids, they were purified under denaturing conditions by immobilized metal ion affinity chromatography, followed by refolding. The fusion proteins were capable of complexing four to five siRNA molecules per protamine, and fully retained the binding specificity for EpCAM as shown on MCF-7 breast carcinoma cells. In contrast to unspecific LipofectAMINE transfection, down-regulation of antiapoptotic bcl-2 using fusion protein complexed siRNA was strictly dependent on EpCAM binding and internalization. Inhibition of bcl-2 expression facilitated tumor cell apoptosis as shown by increased sensitivity to the anticancer agent doxorubicin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Several treatment strategies are available for adults with advanced-stage Hodgkin's lymphoma, but studies assessing two alternative standards of care-increased dose bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPPescalated), and doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD)-were not powered to test differences in overall survival. To guide treatment decisions in this population of patients, we did a systematic review and network meta-analysis to identify the best initial treatment strategy. METHODS We searched the Cochrane Library, Medline, and conference proceedings for randomised controlled trials published between January, 1980, and June, 2013, that assessed overall survival in patients with advanced-stage Hodgkin's lymphoma given BEACOPPbaseline, BEACOPPescalated, BEACOPP variants, ABVD, cyclophosphamide (mechlorethamine), vincristine, procarbazine, and prednisone (C[M]OPP), hybrid or alternating chemotherapy regimens with ABVD as the backbone (eg, COPP/ABVD, MOPP/ABVD), or doxorubicin, vinblastine, mechlorethamine, vincristine, bleomycin, etoposide, and prednisone combined with radiation therapy (the Stanford V regimen). We assessed studies for eligibility, extracted data, and assessed their quality. We then pooled the data and used a Bayesian random-effects model to combine direct comparisons with indirect evidence. We also reconstructed individual patient survival data from published Kaplan-Meier curves and did standard random-effects Poisson regression. Results are reported relative to ABVD. The primary outcome was overall survival. FINDINGS We screened 2055 records and identified 75 papers covering 14 eligible trials that assessed 11 different regimens in 9993 patients, providing 59 651 patient-years of follow-up. 1189 patients died, and the median follow-up was 5·9 years (IQR 4·9-6·7). Included studies were of high methodological quality, and between-trial heterogeneity was negligible (τ(2)=0·01). Overall survival was highest in patients who received six cycles of BEACOPPescalated (HR 0·38, 95% credibility interval [CrI] 0·20-0·75). Compared with a 5 year survival of 88% for ABVD, the survival benefit for six cycles of BEACOPPescalated is 7% (95% CrI 3-10)-ie, a 5 year survival of 95%. Reconstructed individual survival data showed that, at 5 years, BEACOPPescalated has a 10% (95% CI 3-15) advantage over ABVD in overall survival. INTERPRETATION Six cycles of BEACOPPescalated significantly improves overall survival compared with ABVD and other regimens, and thus we recommend this treatment strategy as standard of care for patients with access to the appropriate supportive care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclin E is the regulatory subunit of the cyclin E/CDK2 complex that mediates the G1-S phase transition. N-terminal cleavage of cyclin E by elastase in breast cancer generates two low molecular weight (LMW) isoforms that exhibit both enhanced kinase activity and resistance to p21 and p27 inhibition compared to fulllength cyclin E. Clinically, approximately 27% of breast cancer patients overexpress LMW-E and associate with poor survival. Therefore, we hypothesize that LMW-E disrupts normal mammary acinar morphogenesis and serves as the initial route into breast tumor development. We first demonstrate that LMW-E overexpression in non-tumorigenic hMECs is sufficient to induce tumor formation in athymic mice significantly more than overexpression of full-length cyclin E and requires CDK2- associated kinase activity. Further in vivo passaging of these tumors augments LMW-E expression and tumorigenic potential. When subjected to acinar morphogenesis in vitro, LMW-E mediates significant morphological disruption by generating hyperproliferative and multi-acinar complexes. Proteomic analysis of patient tissues and tumor cells with high LMW-E expression reveals that the activation of the b-Raf-ERK1/2-mTOR pathway in concert with high LMW-E expression predicts poor patient survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (b-raf inhibitor) effectively prevented aberrant acinar formation in LMW-E-expressing cells by inducing the G1/S cell cycle arrest. In addition, the LMW-E-expressing tumor cells exhibit phenotypes characteristic of the EMT and enhanced cellular invasiveness. These tumor cells also enrich for cells with CSC phenotypes such as increased CD44hi/CD24lo population, enhanced mammosphere formation, and upregulation of ALDH expression and enzymatic activity. Furthermore, the CD44hi/CD24lo population also shows positive correlation with LMW-E expression in both the tumor cell line model and breast cancer patient samples (p<0.0001 & p=0.0435, respectively). Combination treatment using doxorubicin and salinomycin demonstrates synergistic cytotoxic effects in cells with LMW-E expression but not in those with full-length cyclin E expression. Finally, ProtoArray microarray identifies Hbo1 as a novel substrate of the cyclin E/CDK2 complex and its overexpression results in enrichment for CSCs. Collectively, these data emphasize the strong oncogenic potential of LMW-E in mammary tumorigenesis and suggest possible therapeutic strategies to treat breast cancer patients with high LMW-E expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary brain neoplasms and metastases to the brain are generally resistant to systemic chemotherapy. The purpose of theses studies was to determine the mechanism(s) for this resistance. We have developed a model to study the biology of brain metastasis by injecting metastatic K1735 melanoma cells into the carotid artery of syngeneic C3H/HeN or nude mice. The resulting brain lesions are produced in the parenchyma of the brain. Mice with subcutaneous or brain melanoma lesions were treated intravenously with doxorubicin (DXR) (7 mg/kg). The s.c. lesions regressed in most of the mice whereas no therapeutic benefits were produced in mice with brain metastases. The intravenous injection of sodium fluorescine revealed that the blood-brain barrier (BBB) is intact in and around brain metastases smaller than 0.2 mm$\sp2$ but not in larger lesions, implying that the BBB is not a major obstacle for chemotherapy of brain metastases.^ Western blot and FACS analyses revealed that K1735 melanoma brain metastases expressed high levels of P-glycoprotein (P-gp) as compared to s.c. tumors or in vitro cultures. Similarly, K1735 cells from brain metastases expressed higher levels of mdrl mRNA. This increased expression of mdrl was due to adaptation to the local brain environment. We base this conclusion on the results of two studies. First, K1735 cells from brain metastases cultured for 7 days lost the high mdrl expression. Second, in crossover experiments K1735 cells from s.c. tumors (low mdrl expression) implanted into the brain exhibited high levels of mdrl expression whereas cells from brain metastases implanted s.c. lost the high level mdrl expression.^ To investigate the mechanism by which the brain environment upregulates mdrl expression of the K1735 cells we first studied the regulation of P-gp in brain endothelial cells. Since astrocytes are closely linked with the BBB we cocultured brain endothelial cells for 3 days with astrocytes. These endothelial cells expressed high levels of mdrl mRNA and protein whereas endothelial cells cocultured with endothelial cells or fibroblasts did not. We next cocultured K1735 melanoma cells with astrocytes. Here again, astrocytes (but not fibroblasts or tumor cells) uprelated the mdrl expression in K1735 tumor cells. This upregulation inversely correlated with intracellular drug accumulation and sensitivity to DXR.^ The data conclude that the resistance of melanoma brain metastases to chemotherapy is not due to an intact BBB but to the upregulation of the mdrl gene by the organ microenvironment, i.e., the astrocytes. This epigenetic mediated resistance to chemotherapy has wide implications for the therapy of brain metastases. ^