403 resultados para Cyperus giganteus
Resumo:
A quantative study was made of silicoflagellates recovered from Sites 642 (lower Miocene-upper Pliocene), 643 (lower Miocene-upper Miocene), and 644 (upper Pliocene-Quaternary) on the Voring Plateau. Although disconformities are present in these sequences, they represent a much more complete record of the Neogene than was recovered previously in the Norwegian Sea by DSDP Leg 38. Silicoflagellates are rare or absent for glacial sequences younger than 2.65 Ma, and generally sparse and poorly preserved in the lower upper Pliocene and upper Miocene. Lower and middle Miocene assemblages are diverse and generally well preserved. Temporal changes in the silicoflagellate assemblage are indicative of major paleoceanographic changes in the Norwegian Sea. A regional zonation for the Neogene of the Norwegian Sea is proposed, consisting of eleven zones: Naviculopsis lata Zone, N. quadrata Zone (emended), N. ponticula Zone (emended), Distephanus speculum hemisphaericus Zone (new), Caryocha ernestinae Zone (new), Bachmannocena circulus var. apiculata/Caryocha Zone (new), Distephanus crux scutulatus Zone (new), Bachmannocena diodon nodosa Zone (new), Distephanus boliviensis Zone (new), Ds. jimlingii Zone (elevated from subzonal to zonal status) with Subzones a and b (new), and Ds. speculum Zone (new). The ranges and abundances of over 100 species and morphotypes are tabulated.
Resumo:
The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming (Graversen et al., 2008, doi:10.1038/nature06502) and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized (Kitchell and Clark, 1982, doi:10.1016/0031-0182(82)90087-6). Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre (Dore et al., 2008, doi:10.1016/j.pocean.2007.10.002), or those indicated for the Mediterranean sapropels (Kemp et al., 1999, doi:10.1038/18001). With increased CO2 levels and warming currently driving increased stratification in the global ocean (Sarmiento et al., 1998, doi:10.1038/30455), this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean (Falcon-Lang et al., 2004, doi:10.1016/j.palaeo.2004.05.016; Amiot et al., 2004, doi:10.1016/j.epsl.2004.07.015; Otto-Bliesner et al., 2002, doi:10.1029/2001JD000821), rather than recent suggestions of a 15 °C mean annual temperature at this time (Jenkyns et al., 2004, doi:10.1038/nature03143).