769 resultados para Could computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. Drivers adopt smaller safety margins when pulling out in front of motorcycles compared with cars. This could partly account for why the most common motorcycle/car accident involves a car violating a motorcyclist's right of way. One possible explanation is the size-arrival effect in which smaller objects are perceived to arrive later than larger objects. That is, drivers may estimate the time to arrival of motorcycles to be later than cars because motorcycles are smaller. Methods. We investigated arrival time judgments using a temporal occlusion paradigm. Drivers recruited from the student population (n = 28 and n = 33) saw video footage of oncoming vehicles and had to press a response button when they judged that vehicles would reach them. Results. In experiment 1, the time to arrival of motorcycles was estimated to be significantly later than larger vehicles (a car and a van) for different approach speeds and viewing times. In experiment 2, we investigated an alternative explanation to the size-arrival effect: that the smaller size of motorcycles places them below the threshold needed for observers to make an accurate time to arrival judgment using tau. We found that the motorcycle/car difference in arrival time estimates was maintained for very short occlusion durations when tau could be estimated for both motorcycles and cars. Conclusions. Results are consistent with the size-arrival effect and are inconsistent with the tau threshold explanation. Drivers estimate motorcycles will reach them later than cars across a range of conditions. This could have safety implications.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Java language first came to public attention in 1995. Within a year, it was being speculated that Java may be a good language for parallel and distributed computing. Its core features, including being objected oriented and platform independence, as well as having built-in network support and threads, has encouraged this view. Today, Java is being used in almost every type of computer-based system, ranging from sensor networks to high performance computing platforms, and from enterprise applications through to complex research-based.simulations. In this paper the key features that make Java a good language for parallel and distributed computing are first discussed. Two Java-based middleware systems, namely MPJ Express, an MPI-like Java messaging system, and Tycho, a wide-area asynchronous messaging framework with an integrated virtual registry are then discussed. The paper concludes by highlighting the advantages of using Java as middleware to support distributed applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronous collaborative systems allow geographically distributed users to form a virtual work environment enabling cooperation between peers and enriching the human interaction. The technology facilitating this interaction has been studied for several years and various solutions can be found at present. In this paper, we discuss our experiences with one such widely adopted technology, namely the Access Grid [1]. We describe our experiences with using this technology, identify key problem areas and propose our solution to tackle these issues appropriately. Moreover, we propose the integration of Access Grid with an Application Sharing tool, developed by the authors. Our approach allows these integrated tools to utilise the enhanced features provided by our underlying dynamic transport layer.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents how workflow-oriented, single-user Grid portals could be extended to meet the requirements of users with collaborative needs. Through collaborative Grid portals different research and engineering teams would be able to share knowledge and resources. At the same time the workflow concept assures that the shared knowledge and computational capacity is aggregated to achieve the high-level goals of the group. The paper discusses the different issues collaborative support requires from Grid portal environments during the different phases of the workflow-oriented development work. While in the design period the most important task of the portal is to provide consistent and fault tolerant data management, during the workflow execution it must act upon the security framework its back-end Grids are built on.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing system? The work reported in this paper is motivated towards bridging this gap by proposing swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Among three proposed approaches, the second approach, namely 'Intelligent Agents' is of focus in this paper. The task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier. agents and can be seamlessly transferred between cores in the event of a pre-dicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed approach is validated on a multi-agent simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported in this paper proposes 'Intelligent Agents', a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing systems? How can autonomic computing approaches be extended towards building reliable systems? How can existing technologies be merged to provide a solution for self-managing systems? The work reported in this paper aims to answer these questions by proposing Swarm-Array Computing, a novel technique inspired from swarm robotics and built on the foundations of autonomic and parallel computing paradigms. Two approaches based on intelligent cores and intelligent agents are proposed to achieve autonomy in parallel computing systems. The feasibility of the proposed approaches is validated on a multi-agent simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.

Relevância:

20.00% 20.00%

Publicador: