959 resultados para Continued formation. Manipulative and informatical abacus.
Resumo:
Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high [SO4]2- reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. d34S values of pyrite are -33 per mil to -50 per mil. Below the sapropels d34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.
Resumo:
The Course “Light and Life”, which is a product of the present research, is a mediator in helping Science Teachers on how to deal with the Physics classes in secondary school. The aim of the present study was to propose a course which can help Science Teachers with their difficulties in the teaching of Physics in the later years of secondary school, mainly about topics related to the theme Light. The elaboration of the product of this research involved structuring and applying a course of continued formation through the “Fun with Science and Art Museum-DICA, under the theme Light, to Science Teachers of the later years of secondary school, in order to promote an environment of dialogue and problem raising as means of disseminating and discussing the teaching of topics related to Light in the teaching of Sciences. The formation course presented a flexible structure in order to widen the relation between the researcher and the teachers participating in the course, aiming to give an answer to the formative needs of the teachers in relation to the theme proposed. In order to know and discuss the problems and challenges of the teaching of Physics in the Science classes, an approach of insertion and integration of concepts related to the theme Light was conducted, mainly on topics relating to the contents of Physics, Chemistry and Biology, according to the curriculum and the abilities of Sciences worked on in class, through the approach of concepts and practice which approximate the practical and theoretical reality of the formative needs of the teachers involved in this study. This work aimed to understand the relation of Science Teachers with the theme Light and comprehend the relation of the teachers with the present proposal of continued formation promoted by the Museum DICA. The methodological option of this research remained in the domains of qualitative research whose analysis was based on the content analysis. The data collection was carried out through questionnaires and group discussions recorded in audio, besides the participative observation of the researcher. As the research product, the structuring and application of a course of continued formation of Science Teachers of secondary school was proposed, under the thematic Light, and a later restructuring of the course under the same thematic based on the data collected after the application of the referred course, which will be later promoted by the Museum DICA.
Resumo:
The current-voltage characteristics of InP were investigated in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to the growth of passivating films. The relationship between the peak currents and the scan rates suggests that the film formation process is diffusion controlled in both cases. The film thickness required to inhibit current flow was found to be much lower on samples anodized in the sulphide solution. Focused ion beam (FIB) secondary electron images of the surface films show that film cracking of the type reported previously for films grown in (NH4)2S is also observed for films grown in KOH. X-ray and electron diffraction measurements indicate the presence of In2O3 and InPO4 in films grown in KOH and In2S3 in films grown in (NH4)2S.
Resumo:
Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.
Resumo:
A succession of 23 sub-millimetre to maximum 12-mm-thick, mostly flood-triggered detrital layers, deposited between 1976 and 2005, was analysed in 12 varved surface sediment cores from meso-scale peri-alpine Lake Mondsee applying microfacies and high-resolution micro X-ray fluorescence analyses. Detailed intrabasin comparison of these layers enabled identification of (i) different source areas of detrital sediments, (ii) flood-triggered sediment flux and local erosion events, and (iii) seasonal differences of suspended flood sediment distribution within the lake basin. Additional calibration of the detrital layer record with river discharge and precipitation data reveals different empirical thresholds for flood layer deposition for different parts of the basin. At proximal locations detrital layer deposition requires floods exceeding a daily discharge of 40 m**3/s, whereas at a location 2 km more distal an hourly discharge of 80 m**3/s and at least 2 days of discharge above 40 m**3/s are necessary. Furthermore, we observe a better correlation between layer thickness and flood amplitude in the depocentre than in distal and proximal areas of the basin. Although our results are partly site-specific, the applied dual calibration approach is suitable to precisely decipher flood layer formation processes and, thereby, improve the interpretation of long flood time series from lake sediments.
Resumo:
The growth rate of Acropora cervicornis branch tips maintained in the laboratory was measured before, during, and after exposure to elevated nitrate (5 and 10 µM NO3-), phosphate (2 and 4 µM P-PO43) and/or pCO2 (CO2 ~700 to 800 µatm). The effect of increased pCO2 was greater than that of nutrient enrichment alone. High concentrations of nitrate or phosphate resulted in significant decreases in growth rate, in both the presence and absence of increased pCO2. The effect of nitrate and phosphate enrichment combined was additive or antagonistic relative to nutrient concentration and pCO2 level. Growth rate recovery was greater after exposure to increased nutrients or CO2 compared to increased nutrients and CO2. If these results accurately predict coral response in the natural environment, it is reasonable to speculate that the survival and reef-building potential of this species will be significantly negatively impacted by continued coastal nutrification and projected pCO2 increases.
Resumo:
Phosphate deposits which apparently formed during the Miocene climatic optimum are widespread on the Chatham Rise and Camp bell Plateau, and on seamounts in the north Tasman Sea. They formed under oxidising conditions by the phosphatisation of older or contemporaneous foraminiferal oozes (Campbell Plateau and Chatham Rise) and coral limestones (Tasman Sea). The phosphorites of the rise and plateau were formed where current activity was sufficiently strong to prevent normal sedimentation, and now form lag deposits. After the Miocene, phosphorite formation ceased and was followed by manganese oxide deposition where conditions were highly oxidising on the eastern Campbell Plateau and north Tasman seamounts, and by glauconite formation in the much less oxidising environments of the western Campbell Plateau and the Chat ham Rise. The manganese deposits are not volcanogenic, as was formerly thought, but formed by slow precipitation from well oxygenated sea water.
Resumo:
The Early Miocene Napak XV locality (ca 20.5 Ma), Uganda, has yielded an interesting assemblage of fossils, including the very well represented amphicyonid Hecubides euryodon. The remarkable find of a nearly complete mandible, unfortunately with poorly preserved dentition, together with new dental remains allow us to obtain a better idea about the morphology and variability of this species. Additionally, we describe a newly discovered mandible of Hecubides euryodon from the Grillental-VI locality (Sperrgebiet, Namibia), which is the most complete and diagnostic Amphicyonidae material found in this area. Comparisons with Cynelos lemanensis from Saint Gérand le Pouy (France), the type locality, and with an updated sample of the species of amphicyonids described in Africa leads us to validate the genus Hecubides. Hecubides would be phylogenetically related to the medium and large size species of Amphicyonidae from Africa, most of them now grouped into the genera Afrocyon and Myacyon, both endemic to this continent.
Resumo:
Currently, there is increasing use of nanomaterials in the food industry thanks to the many advantages offered and make the products that contain them more competitive in the market. Their physicochemical properties often differ from those of bulk materials, which require specialized risk assessment. This should cover the risks to the health of workers and consumers as well as possible environmental risks. The risk assessment methods must go updating due to more widespread use of nanomaterials, especially now that are making their way down to consumer products. Today there is no specific legislation for nanomaterials, but there are several european dispositions and regulations that include them. This review gives an overview of the risk assessment and the existing current legislation regarding the use of nanotechnology in the food industry.
Resumo:
Afin d’étudier l’historique de formation stellaire et d’enrichissement chimique des galaxies spirales barrées, j’ai simulé l’évolution de 27 galaxies spirales, barrées et non barrées, de diverses masses stellaires et fractions de gaz. Alors que les galaxies non barrées présentent une évolution lente et continue sur les deux milliards d’années que durent nos simulations, les galaxies barrées ont une évolution bien plus explosive, et ce particulièrement pour les galaxies les plus massives. Dans un premier temps, je montre que la présence de la barre entraine un flot important de gaz des régions périphériques vers le centre de la galaxie barrée, causant un sursaut de formation stellaire et une croissance importante de l’abondance chimique centrale, et que l’amplitude et la vitesse à laquelle ce sursaut arrive augmentent avec la masse de la galaxie. Cet épisode de sursaut stellaire entraine alors une diminution importante de la masse de gaz, entrainant à son tour une décroissance de la formation stellaire et une stagnation de l’enrichissement chimique pour le reste de l’évolution de la galaxie. Dans un deuxième temps, je montre qu’à cause de la dynamique en deux périodes très différentes des galaxies barrées, deux galaxies de masse très semblable peuvent avoir des taux de formation stellaire et des métallicités complètement différentes en fonction de leur stade évolutif, stade qu’on ne peut déterminer aisément. Cette difficulté est tout aussi importante lorsqu’on compare le coeur des galaxies barrées et non barrées entre elles, étant donné que des coeurs comparables sont situés dans les galaxies très différentes, et que des galaxies semblables ont des coeurs très différents.
Resumo:
Mesoscale Gravity Waves (MGWs) are large pressure perturbations that form in the presence of a stable layer at the surface either behind Mesoscale Convective Systems (MCSs) in summer or over warm frontal surfaces behind elevated convection in winter. MGWs are associated with damaging winds, moderate to heavy precipitation, and occasional heat bursts at the surface. The forcing mechanism for MGWs in this study is hypothesized to be evaporative cooling occurring behind a convective line. This evaporatively-cooled air generates a downdraft that then depresses the surface-based stable layer and causes pressure decreases, strong wind speeds and MGW genesis. Using the Weather Research and Forecast Model (WRF) version 3.0, evaporative cooling is simulated using an imposed cold thermal. Sensitivity studies examine the response of MGW structure to different thermal and shear profiles where the strength and depth of the inversion are varied, as well as the amount of wind shear. MGWs are characterized in terms of response variables, such as wind speed perturbations (U'), temperature perturbations (T'), pressure perturbations (P'), potential temperature perturbations (Θ'), and the correlation coefficient (R) between U' and P'. Regime Diagrams portray the response of MGW to the above variables in order to better understand the formation, causes, and intensity of MGWs. The results of this study indicate that shallow, weak surface layers coupled with deep, neutral layers above favor the formation of waves of elevation. Conversely, deep strong surface layers coupled with deep, neutral layers above favor the formation of waves of depression. This is also the type of atmospheric setup that tends to produce substantial surface heating at the surface.
Resumo:
Today the Ria de Aveiro of northern Portugal has a hydromorphological regime in which river influence is limited to periods of flood. For most of the annual cycle, tidal currents and wind waves are the major forcing agents in this complex coastal lagoon–estuarine system. The system has evolved over two centuries from one that was naturally fluvially dominant to one that is today tidally dominant. Human influence was a trigger for these changes, starting in 1808 when its natural evolution was halted by the construction of a new inlet/outlet channel through the mobile sand spit that isolates it from the Atlantic Ocean. In consequence, tidal ranges in the lagoon increased rapidly from ~0.1 m to >1 m and continued to increase, as a result of continued engineering works and dredging, today reaching ~3 m on spring tides. Hydromorphological adjustments that have taken place include the deepening of channels, an increase in the area of inter-tidal flats, regression of salt marsh, increased tidal propagation and increased saline intrusion. Loss of once abundant submerged aquatic vegetation (SAV), due to increased tidal flows, exacerbated by increased recreational activities, has been accompanied by a change from fine cohesive sediments to coarser, mobile sediments with reduced biological activity.
Resumo:
In the present study the origin of clay deposits occurring in an inland platform, in central Portugal, was investigated by their mineralogical and chemical composition. The clay deposits, exploited for ceramic industry are composed of silt-clay facies, the Monteira Member and the Arroça Member, which are assigned to the Coja Formation (Paleogene) and the Campelo Formation (Miocene), respectively. These clayey facies show almost compositional homogeneity, especially concerning texture. The mineralogical composition of the Monteira Member displays slightly higher content in smectite and interstratified clay minerals, which is supported by the chemical composition of samples analyzed. Both members present similar REE patterns, displaying an intense weathering record and little variation in the source area composition. Minor element geochemistry suggests low content in heavy minerals and transition metals. REE patterns and ratios of geochemical parameters support the dominant metasedimentary provenance, with a granite source contribution and also mature recycled sediments of continental origin. The study results’ suggest that the clays of these two members have the same source in terms of lithology and recycled sediments from the Hesperian massif. During the deposition of the Arroça Member, a major remobilization of the Monteira Member is suggested, explaining the geochemical similarity of both facies.
Resumo:
Chromosome microarray analysis is a powerful diagnostic tool and is being used as a first-line approach to detect chromosome imbalances associated with intellectual disability, dysmorphic features and congenital abnormalities. This test enables the identification of new copy number variants (CNVs) and their association with new microdeletion/microduplication syndromes in patients previously without diagnosis. We report the case of a 7 year-old female with moderate intellectual disability, severe speech delay and auto and hetero aggressivity with a previous 45,XX,der(13;14)mat karyotype performed at a younger age. Affymetrix CytoScan 750K chromosome microarray analysis was performed detecting a 1.77 Mb deletion at 3p26.3, encompassing 2 OMIM genes, CNTN6 and CNTN4. These genes play an important role in the formation, maintenance, and plasticity of functional neuronal networks. Deletions or mutations in CNTN4 gene have been implicated in intellectual disability and learning disabilities. Disruptions or deletions in the CNTN6 gene have been associated with development delay and other neurodevelopmental disorders. The haploinsufficiency of these genes has been suggested to participate to the typical clinical features of 3p deletion syndrome. Nevertheless inheritance from a healthy parent has been reported, suggesting incomplete penetrance and variable phenotype for this CNV. We compare our patient with other similar reported cases, adding additional value to the phenotype-genotype correlation of deletions in this region.
Resumo:
When a liquid is irradiated with ultrasound, acoustic cavitation (the formation, growth, and implosive collapse of bubbles in liquids irradiated with ultrasound) generally occurs. This is the phenomenon responsible for the driving of chemical reactions (sonochemistry) and the emission of light (sonoluminescence). The implosive collapse of bubbles in liquids results in an enormous concentration of sound energy into compressional heating of the bubble contents. Therefore, extreme chemical and physical conditions are generated during cavitation. The study of multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) in exotic liquids such as sulfuric acid (H2SO4) and phosphoric acid (H3PO4) leads to useful information regarding the intracavity conditions during bubble collapse. Distinct sonoluminescing bubble populations were observed from the intense orange and blue-white emissions by doping H2SO4 and H3PO4 with sodium salts, which provides the first experimental evidence for the injected droplet model over the heated-shell model for cavitation. Effective emission temperatures measured based on excited OH• and PO• emission indicate that there is a temperature inhomogeneity during MBSL in 85% H3PO4. The formation of a temperature inhomogeneity is due to the existence of different cavitating bubble populations: asymmetric collapsing bubbles contain liquid droplets and spherical collapsing bubbles do not contain liquid droplets. Strong molecular emission from SBSL in 65% H3PO4 have been obtained and used as a spectroscopic probe to determine the cavitation temperatures. It is found that the intracavity temperatures are dependent on the applied acoustic pressures and the thermal conductivities of the dissolved noble gases. The chemical and physical effects of ultrasound can be used for materials synthesis. Highly reactive species, including HO2•, H•, and OH• (or R• after additives react with OH•), are formed during aqueous sonolysis as a consequence of the chemical effects of ultrasound. Reductive species can be applied to synthesis of water-soluble fluorescent silver nanoclusters in the presence of a suitable stabilizer or capping agent. The optical and fluorescent properties of the Ag nanoclusters can be easily controlled by the synthetic conditions such as the sonication time, the stoichiometry of the carboxylate groups to Ag+, and the polymer molecular weight. The chemical and physical effects of ultrasound can be combined to prepare polymer functionalized graphenes from graphites and a reactive solvent, styrene. The physical effects of ultrasound are used to exfoliate graphites to graphenes while the chemical effects of ultrasound are used to induce the polymerization of styrene which can then functionalize graphene sheets via radical coupling. The prepared polymer functionalized graphenes are highly stable in common organic solvents like THF, CHCl3, and DMF. Ultrasonic spray pyrolysis (USP) is used to prepare porous carbon spheres using energetic alkali propiolates as the carbon precursors. In this synthesis, metal salts are generated in situ, introducing porous structures into the carbon spheres. When different alkali salts or their mixtures are used as the precursor, carbon spheres with different morphologies and structures are obtained. The different precursor decomposition pathways are responsible for the observed structural difference. Such prepared carbon materials have high surface area and are thermally stable, making them potentially useful for catalytic supports, adsorbents, or for other applications by integrating other functional materials into their pores.