848 resultados para Content Based Image Retrieval (CBIR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción: La incidencia del cáncer de piel melanoma y no melanoma es un problema de salud pública a nivel mundial. El incremento en la incidencia del cáncer de piel en los últimos años se debe a múltiples factores como: cambios en los estilos de vida, el envejecimiento de la población, cambios ambientales, el desconocimiento a la exposición a la radiación ultravioleta (RUV) durante la práctica de actividad física sin elementos de fotoprotección, siendo éste último reconocido como el principal factor de riesgo. Objetivo: Evaluar los efectos de una intervención educativa en los conocimientos y comportamientos relacionados con la fotoprotección durante la práctica de la actividad física en estudiantes de un colegio público de Bogotá D.C., Colombia. Métodos: Estudio de intervención, antes y después, no controlado en 281 estudiantes de los grados noveno, décimo y once de estratos 1-3 de un colegio público de Bogotá, con seguimiento a 1, 3 y 6 meses post-intervención. Se evaluaron los conocimientos y los hábitos de fotoprotección mediante un cuestionario Cancer Awareness Measure (CAM) y el modelo Transteórico de cambio comportamental de Prochaska y Di Clemente. El estudio se realizó durante el primer semestre de 2015 con 4 sesiones educativas de 60 minutos apoyadas con material audiovisual y pedagógico, acorde a la Guía para la Comunicación Educativa en el marco el control del cáncer publicada por el Instituto Nacional de Cancerología. Resultados: Del grupo de estudiantes que participaron del estudio, el 52,3% eran hombres, el promedio de edad fue de 15,46 ± 1,2 años. El tipo de piel predominante fue la trigueña con 65,8%. La intervención educativa produjo cambios significativos en los conocimientos de foto protección, finalizado el seguimiento al sexto mes. En cuanto a la prevención los estudiantes refirieron tener conocimiento de cómo examinar su piel en el momento basal (12,5% n=35), presentándose un aumento significativo de 62,6% (n=211) al sexto mes (p<0,05). Conclusión: El estudio demostró la efectividad de la intervención educativa, evidenciando cambios significativos en los conocimientos en fotoprotección y comportamientos preventivos del cáncer de piel durante la práctica de la actividad física en estudiantes de un colegio público de Bogotá D.C., Colombia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative imaging in oncology aims at developing imaging biomarkers for diagnosis and prediction of cancer aggressiveness and therapy response before any morphological change become visible. This Thesis exploits Computed Tomography perfusion (CTp) and multiparametric Magnetic Resonance Imaging (mpMRI) for investigating diverse cancer features on different organs. I developed a voxel-based image analysis methodology in CTp and extended its use to mpMRI, for performing precise and accurate analyses at single-voxel level. This is expected to improve reproducibility of measurements and cancer mechanisms’ comprehension and clinical interpretability. CTp has not entered the clinical routine yet, although its usefulness in the monitoring of cancer angiogenesis, due to different perfusion computing methods yielding unreproducible results. Instead, machine learning applications in mpMRI, useful to detect imaging features representative of cancer heterogeneity, are mostly limited to clinical research, because of results’ variability and difficult interpretability, which make clinicians not confident in clinical applications. In hepatic CTp, I investigated whether, and under what conditions, two widely adopted perfusion methods, Maximum Slope (MS) and Deconvolution (DV), could yield reproducible parameters. To this end, I developed signal processing methods to model the first pass kinetics and remove any numerical cause hampering the reproducibility. In mpMRI, I proposed a new approach to extract local first-order features, aiming at preserving spatial reference and making their interpretation easier. In CTp, I found out the cause of MS and DV non-reproducibility: MS and DV represent two different states of the system. Transport delays invalidate MS assumptions and, by correcting MS formulation, I have obtained the voxel-based equivalence of the two methods. In mpMRI, the developed predictive models allowed (i) detecting rectal cancers responding to neoadjuvant chemoradiation showing, at pre-therapy, sparse coarse subregions with altered density, and (ii) predicting clinically significant prostate cancers stemming from the disproportion between high- and low- diffusivity gland components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation explores the link between hate crimes that occurred in the United Kingdom in June 2017, June 2018 and June 2019 through the posts of a robust sample of Conservative and radical right users on Twitter. In order to avoid the traditional challenges of this kind of research, I adopted a four staged research protocol that enabled me to merge content produced by a group of randomly selected users to observe the phenomenon from different angles. I collected tweets from thirty Conservative/right wing accounts for each month of June over the three years with the help of programming languages such as Python and CygWin tools. I then examined the language of my data focussing on humorous content in order to reveal whether, and if so how, radical users online often use humour as a tool to spread their views in conditions of heightened disgust and wide-spread political instability. A reflection on humour as a moral occurrence, expanding on the works of Christie Davies as well as applying recent findings on the behavioural immune system on online data, offers new insights on the overlooked humorous nature of radical political discourse. An unorthodox take on the moral foundations pioneered by Jonathan Haidt enriched my understanding of the analysed material through the addition of a moral-based layer of enquiry to my more traditional content-based one. This convergence of theoretical, data driven and real life events constitutes a viable “collection of strategies” for academia, data scientists; NGO’s fighting hate crimes and the wider public alike. Bringing together the ideas of Davies, Haidt and others to my data, helps us to perceive humorous online content in terms of complex radical narratives that are all too often compressed into a single tweet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we describe agent-based content retrieval for opportunistic networks, where requesters can delegate content retrieval to agents, which retrieve the content on their behalf. The approach has been implemented in CCNx, the open source CCN framework, and evaluated on Android smart phones. Evaluations have shown that the overhead of agent delegation is only noticeable for very small content. For content larger than 4MB, agent-based content retrieval can even result in a throughput increase of 20% compared to standard CCN download applications. The requester asks every probe interval for agents that have retrieved the desired content. Evaluations have shown that a probe interval of 30s delivers the best overall performance in our scenario because the number of transmitted notification messages can be decreased by up to 80% without significantly increasing the download time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electronic publishing exploits numerous possibilities to present or exchange information and to communicate via most current media like the Internet. By utilizing modern Web technologies like Web Services, loosely coupled services, and peer-to-peer networks we describe the integration of an intelligent business news presentation and distribution network. Employing semantics technologies enables the coupling of multinational and multilingual business news data on a scalable international level and thus introduce a service quality that is not achieved by alternative technologies in the news distribution area so far. Architecturally, we identified the loose coupling of existing services as the most feasible way to address multinational and multilingual news presentation and distribution networks. Furthermore we semantically enrich multinational news contents by relating them using AI techniques like the Vector Space Model. Summarizing our experiences we describe the technical integration of semantics and communication technologies in order to create a modern international news network.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Personal memories composed of digital pictures are very popular at the moment. To retrieve these media items annotation is required. During the last years, several approaches have been proposed in order to overcome the image annotation problem. This paper presents our proposals to address this problem. Automatic and semi-automatic learning methods for semantic concepts are presented. The automatic method is based on semantic concepts estimated using visual content, context metadata and audio information. The semi-automatic method is based on results provided by a computer game. The paper describes our proposals and presents their evaluations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Abstract Since its creation, the Internet has permeated our daily life. The web is omnipresent for communication, research and organization. This exploitation has resulted in the rapid development of the Internet. Nowadays, the Internet is the biggest container of resources. Information databases such as Wikipedia, Dmoz and the open data available on the net are a great informational potentiality for mankind. The easy and free web access is one of the major feature characterizing the Internet culture. Ten years earlier, the web was completely dominated by English. Today, the web community is no longer only English speaking but it is becoming a genuinely multilingual community. The availability of content is intertwined with the availability of logical organizations (ontologies) for which multilinguality plays a fundamental role. In this work we introduce a very high-level logical organization fully based on semiotic assumptions. We thus present the theoretical foundations as well as the ontology itself, named Linguistic Meta-Model. The most important feature of Linguistic Meta-Model is its ability to support the representation of different knowledge sources developed according to different underlying semiotic theories. This is possible because mast knowledge representation schemata, either formal or informal, can be put into the context of the so-called semiotic triangle. In order to show the main characteristics of Linguistic Meta-Model from a practical paint of view, we developed VIKI (Virtual Intelligence for Knowledge Induction). VIKI is a work-in-progress system aiming at exploiting the Linguistic Meta-Model structure for knowledge expansion. It is a modular system in which each module accomplishes a natural language processing task, from terminology extraction to knowledge retrieval. VIKI is a supporting system to Linguistic Meta-Model and its main task is to give some empirical evidence regarding the use of Linguistic Meta-Model without claiming to be thorough.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The image comparison operation ??sessing how well one image matches another ??rms a critical component of many image analysis systems and models of human visual processing. Two norms used commonly for this purpose are L1 and L2, which are specific instances of the Minkowski metric. However, there is often not a principled reason for selecting one norm over the other. One way to address this problem is by examining whether one metric better captures the perceptual notion of image similarity than the other. With this goal, we examined perceptual preferences for images retrieved on the basis of the L1 versus the L2 norm. These images were either small fragments without recognizable content, or larger patterns with recognizable content created via vector quantization. In both conditions the subjects showed a consistent preference for images matched using the L1 metric. These results suggest that, in the domain of natural images of the kind we have used, the L1 metric may better capture human notions of image similarity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)