960 resultados para Containing Superoxide-dismutase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on the synthesis and characterization of two new ternary copper(II) complexes: [Cu(doxy-cycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (1) and [Cu(tetracycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (2). These compounds exhibit a distorted tetragonal geometry around copper, which is coordinated to two bidentate ligands, 1,10-phenanthroline and tetracycline or doxycyline, a water molecule, and a perchlorate ion weakly bonded in the axial positions. In both compounds, copper(II) binds to tetracyclines`. via the oxygen of the hydroxyl group and oxygen of the amide group at ring A and to 1,10-phenanthroline via its two heterocyclic nitrogens. We have evaluated the binding of the new complexes to DNA, their capacity to cleave it, their cytotoxic activity, and uptake in tumoral cells. The complexes bind to DNA preferentially by the major groove, and then cleave its strands by an oxidative mechanism involving the generation of ROS. The cleavage of DNA was inhibited by radical inhibitors and/or trappers such as superoxide dismutase, DMSO, and the copper(I) chelator bathocuproine. The enzyme T4 DNA ligase was not able to relegate the products of DNA cleavage, which indicates that the cleavage does not occur via a hydrolytic mechanism. Both complexes present an expressive plasmid DNA cleavage activity generating single- and double-strand breaks, under mild reaction conditions, and even in the absence of any additional oxidant or reducing agent. In the same experimental conditions, [Cu(phen)(2)](2+) is approximately 100-fold less active than our complexes. These complexes are among the most potent DNA cleavage agents reported so far. Both complexes inhibit the growth of K562 cells With the IC(50) values of 1.93 and 2.59 mu mol L(-1) for compounds I and 2, respectively. The complexes are more active than the free ligands, and their cytotoxic activity correlates with intracellular copper concentration and the number of Cu-DNA adducts formed inside cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catalase mimetic complex Mn(III)-salen chloride (EUK8) was found to be pro-oxidant under low hydrogen peroxide concentrations. The increase in the fluorescence rate of the probe 1,2,3-dihydrorhodamine (DHR) in solution, as well as the carbonyl content of human serum albumin were found to be maximum at H(2)O(2):EUK8 molar ratios ranging from 0 to 2, supporting previous findings regarding the mechanism of EUK8 catalase activity and the formation of highly oxidative Mn(V)-O(2-) species. This pro-oxidant effect is precluded by the presence of glutathione. Cytotoxicity to HeLa cells, as probed by increased rate of oxidation of intracellular DHR, was not observed. Our findings suggest that the combination of H(2)O(2) and EUK8 at specific molar ratios, in the absence of reductants/antioxidants, induces the oxidation of organic molecules. It is shown that the fluorimetric determination of pro-oxidant activity of metal complexes is more sensitive than the colorimetric quantification of protein carbonyl content. The implications of our findings with respect to the somewhat confusing results arising from in vivo studies of EUK8 and other Mn(III) anti-oxidant metal complexes are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this work was to analyse some oxidative stress parameters in patients of Systemic Lúpus Erythematosus. PATIENTS AND METHODS: Determinations of reduced glutathione content in whole blood were carried out. The activity of superoxide dismutase, gluthatione peroxidase and catalase in erythrocytes and the concentration of reactive substances of acid thiobarbituric in plasma of patients female (n =19) with SLE no activity of disease (Mex-SLEDAI < 2), with average ages of 32 ± 11 years, through the spectrophotometrical methods and from healthy individuals (n =30). Statistical data were analyzed by student t-test, p<0,05. RESULTS: Our data indicated a significant decrease on the activity of catalase and significant increase on the concentration of reactive substances of acid thiobarbituric in patients with SLE comparing with healthy individuals. There was no significant difference in other parameters. CONCLUSION: The results showed that oxidative stress has a role in the pathogenesis of the disease in SLE, even in patients without active disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Post-menopause is a period of women s life cycle that is characterized by estrogen depletion and therefore increasing cardiovascular diseases, neurodegenerative disorders, urogenital atrophy, osteoporosis, hot flushes and sexual discomfort incidences. Estrogen is a hormone with comfirmed antioxidant action and its depletion is related to oxidative stress instalation and damaging various important biomolecules. Regular physical activity has been identified as a factor involved in reducing women s post-menopausal complications in addition to improving antioxidant defense by reducing the oxidative damage and consequently improving life s quality in this part of the population. This study aims to evaluate the influence of hypoestrogenism in antioxidant adaptation due to regular exercise, by determining reduced glutathione (GSH) and Thiobarbituric Acid Reactive Substances (SRAT) concentrations and antioxidant enzymes glutathione peroxidase (GPx), Superoxide Dismutase (SOD) and Catalase (CAT) activities in blood, brain and liver of rats. To achieve this goal we used 50 Wistar rats, weighing 180-250g which were divided into two groups, control - GC (25) and ooforectomized - GO (25). Each group was subdivided into five subgroups: Not-trained - S (5), Not-trained Acute Exercise - SEA (5), regular exercise 30 days - E30 (5), regular exercise 60 days - E60 (5) and regular exercise 90 days - E90 (5). Each of the three subgroups exercised regularly was subjected to acute exercise on the eve and the day of sacrifice to collect biological samples of blood, liver and brain and subsequent determination of SRAT concentration, GSH content and antioxidant enzymes GPx, SOD and CAT activities. The results indicated that the sedentary animals acutely exercised presented oxidative stress and regular physical activity led to antioxidant adaptation. In ooforectomized group the antioxidant adaptation seen in control animals showed to be impaired. Unlike the results from blood and liver, in brain there was a shield against oxidative damage originated by the exercise and that hypoestrogenism led to a loss of this natural antioxidant potential. Therefore, hypoestrogenism interferes negatively in antioxidant adaptation due to regular exercise

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dietary modifications may significantly reduce cardiovascular disease (CVD) risk factors, including cholesterol and atherosclerosis. The present study addressed the effects of the crude extract from the pulp fruit of Tamarindus indica L. on lipid serum levels and early atherosclerotic lesions in hypercholesterolemic hamsters in vivo, and the extract's antioxidant action, in vitro. Animals were fed on either chow or atherogenic diet during 10 weeks and concomitantly received either water or T indica L. extract for drinking. Treatment of hypercholesterolemic hamsters with the T. indica pulp fruit extract (5%) led to a decrease in the levels of serum total cholesterol (50%), non-HDL cholesterol (73%) and triglyceride (60%), and to an increase of high-density lipoprotein (HDL) cholesterol levels (61%). In vitro, the extract presented radical scavenging ability, as assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals assays, and led to decreased lipid peroxidation in serum, as assessed by the thiobarbituric acid reactive substances (TBARS) assay. In vivo, the extract improved the efficiency of the antioxidant defense system, as assessed by the superoxide dismutase, catalase and glutathione peroxidase activities. Together these results indicate the potential of tamarind extracts in diminishing the risk of atherosclerosis development in humans. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plantas de aguapé foram cultivadas em solução nutritiva de Hoagland & Arnon n.2, cujo aumento dos níveis de N, P e Cu estabeleceu as diferenças entre os tratamentos. Utilizou-se o delineamento experimental inteiramente casualizado, com quatro repetições. As variáveis fisiológicas avaliadas foram área foliar, peso de matéria seca e taxa de crescimento absoluto, taxa de crescimento relativo, taxa assimilatória líquida, razão de área foliar, peso específico de folha, área foliar específica. Foram determinados também os teores de açúcares totais e redutores e de aminoácidos totais e a atividade das enzimas glutationa S-transferase e superóxido dismutase. Os extratos enzimáticos foram obtidos da matéria fresca da parte aérea das plantas. Após a coleta, foram determinados os pesos de material seco de raízes, pecíolos e folhas, que foram utilizados para a determinação de açúcares solúveis totais e redutores e de aminoácidos. O excesso de nitrogênio causou aumento de açúcares nas folhas e de aminoácidos nas raízes. Já o tratamento com excesso de fósforo levou ao aumento de açúcares nas raízes. Os resultados apresentados sugerem que, entre os nutrientes em excesso avaliados, o cobre (0,12 mg L-1) foi o maior indutor da atividade da GST e SOD, sugerindo que este elemento induziu estresse nas plantas de aguapé.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. There is considerable evidence that cellular oxidative stress caused by hyperglycemia plays an important role in the genesis and evolution of chronic diabetic lesions. In this study, we determined the effectiveness of pancreas transplantation (PT) in preventing the imbalance caused by excessive production of reactive oxygen species over antioxidant defenses in lungs of rats rendered diabetic by alloxan injection.Methods. Sixty inbred male Lewis rats, weighing 250-280 g, were randomly assigned to 3 experimental groups: NC, 20 nondiabetic control rats; DC, 20 untreated diabetic control rats; and PT, 20 diabetic rats that received syngeneic PT from normal donor Lewis rats. Each group was further divided into 2 subgroups of 10 rats each which were killed after 4 and 12 weeks of follow-up. Plasma glucose, glycosylated hemoglobin, and insulin levels were determined in all rats. Lipid hydroperoxide (LPO) concentrations and enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in the pulmonary tissue of all rats.Results. The DC rats showed elevated blood glucose and glycosylated hemoglobin levels, with insulin blood levels significantly lower than the NC rats (P < .001). They also showed significantly increased LPO concentrations in the lungs (P < .01) after 4 and 12 weeks of follow-up. In contrast, SOD, CAT, and GSH-Px antioxidant activities were significantly reduced in these periods (P < .01) 12 weeks after diabetes induction. Successful PT corrected all clinical and metabolic changes in the diabetic rats, with sustained normoglycemia throughout the study. Excessive lung LPO production and low SOD, CAT, and GSH-Px antioxidant activities were already back to normal 4 weeks after PT.Conclusion. PT can control oxidative stress in pulmonary tissue of diabetic rats. It may be the basis for preventing chronic diabetic lesions in lungs.