850 resultados para Computer aided design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defining Simulation Intent involves capturing high level modelling and idealisation decisions in order to create an efficient and fit-for-purpose analysis. These decisions are recorded as attributes of the decomposed design space.

An approach to defining Simulation Intent is described utilising three known technologies: Cellular Modelling, the subdivision of space into volumes of simulation significance (structures, gas paths, internal and external airflows etc.); Equivalencing, maintaining a consistent and coherent description
of the equivalent representations of the spatial cells in different analysis models; and Virtual Topology, which offers tools for partitioning and de-partitioning the model without disturbing the manufacturing oriented design geometry. The end result is a convenient framework to which high level analysis attributes can be applied, and from which detailed analysis models can be generated
with a high degree of controllability, repeatability and automation. There are multiple novel aspects to the approach, including its reusability, robustness to changes in model topology and the inherent links created between analysis models at different levels of fidelity and physics.

By utilising Simulation Intent, CAD modelling for simulation can be fully exploited and simulation work-flows can be more readily automated, reducing many repetitive manual tasks (e.g. the definition of appropriate coupling between elements of different types and the application of boundary conditions). The approach has been implemented and tested with practical examples, and
significant benefits are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the applicability of an immersive virtual reality (VR) system to the process of organizational learning in a manufacturing context. The work focuses on the extent to which realism has to be represented in a simulated product build scenario in order to give the user an effective learning experience for an assembly task. Current technologies allow the visualization and manipulation of objects in VR systems but physical behaviors such as contact between objects and the effects of gravity are not commonly represented in off the shelf simulation solutions and the computational power required to facilitate these functions remains a challenge. This work demonstrates how physical behaviors can be coded and represented through the development of more effective mechanisms for the computer aided design (CAD) and VR interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines the importance of robust interface management for facilitating finite element analysis workflows. Topological equivalences between analysis model representations are identified and maintained in an editable and accessible manner. The model and its interfaces are automatically represented using an analysis-specific cellular decomposition of the design space. Rework of boundary conditions following changes to the design geometry or the analysis idealization can be minimized by tracking interface dependencies. Utilizing this information with the Simulation Intent specified by an analyst, automated decisions can be made to process the interface information required to rebuild analysis models. Through this work automated boundary condition application is realized within multi-component, multi-resolution and multi-fidelity analysis workflows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New techniques are presented for using the medial axis to generate decompositions on which high quality block-structured meshes with well-placed mesh singularities can be generated. Established medial-axis-based meshing algorithms are effective for some geometries, but in general, they do not produce the most favourable decompositions, particularly when there are geometric concavities. This new approach uses both the topological and geometric information in the medial axis to establish a valid and effective arrangement of mesh singularities for any 2-D surface. It deals with concavities effectively and finds solutions that are most appropriate to the geometric shapes. Resulting meshes are shown for a number of example models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This systematic review aimed to report and explore the survival of dental veneers constructed from non-feldspathic porcelain over 5 and 10 years.

MATERIALS AND METHODS: A total of 4,294 articles were identified through a systematic search involving all databases in the Cochrane Library, MEDLINE (OVID), EMBASE, Web of Knowledge, specific journals (hand-search), conference proceedings, clinical trials registers, and collegiate contacts. Articles, abstracts, and gray literature were sought by two independent researchers. There were no language limitations. One hundred sixteen studies were identified for full-text assessment, with 10 included in the analysis (5 qualitative, 5 quantitative). Study characteristics and survival (Kaplan-Meier estimated cumulative survival and 95% confidence interval [CI]) were extracted or recalculated. A failed veneer was one which required an intervention that disrupted the original marginal integrity, had been partially or completely lost, or had lost retention more than twice. A meta-analysis and sensitivity analysis of Empress veneers was completed, with an assessment of statistical heterogeneity and publication bias. Clinical heterogeneity was explored for results of all veneering materials from included studies.

RESULTS: Within the 10 studies, veneers were fabricated with IPS Empress, IPS Empress 2, Cerinate, and Cerec computer-aided design/computer-assisted manufacture (CAD/CAM) materials VITA Mark I, VITA Mark II, Ivoclar ProCad. The meta-analysis showed the pooled estimate for Empress veneers to be 92.4% (95% CI: 89.8% to 95.0%) for 5-year survival and 66% to 94% (95% CI: 55% to 99%) for 10 years. Data regarding other non-feldspathic porcelain materials were lacking, with only a single study each reporting outcomes for Empress 2, Cerinate, and various Cerec porcelains over 5 years. The sensitivity analysis showed data from one study had an influencing and stabilizing effect on the 5-year pooled estimate.

CONCLUSION: The long-term outcome (> 5 years) of non-feldspathic porcelain veneers is sparsely reported in the literature. This systematic review indicates that the 5-year cumulative estimated survival for etchable non-feldspathic porcelain veneers is over 90%. Outcomes may prove clinically acceptable with time, but evidence remains lacking and the use of these materials for veneers remains experimental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years, ionic liquids have emerged as a class of novel fluids that have inspired the development of a number of new products and processes. The ability to design these materials with specific functionalities and properties means that they are highly relevant to the growing philosophy of chemical-product design. This is particularly appropriate in the context of a chemical industry that is becoming increasingly focussed on small-volume, high-value added products with relatively short times to market. To support such product and process development, a number of tools can be utilised. A key requirement is that the tool can predict the physical properties and activity coefficients of multi-component mixtures and, if required, model the process in which the materials will be used. Multi-scale simulations that span density functional theory (DFT) to process-engineering computations can address the relevant time and length scales and have increased in usage with the availability of cheap and powerful computers. Herein we will discuss the area of engineering calculations relating to the design of ionic liquid processes, that is, the computational tools that bridge this gap and allow for process simulation tools to utilise and assist in the design of ionic liquids. It will be shown that, at present, it is possible to use available tools to estimate many important properties of ionic liquids and mixtures containing them with a sufficient level of accuracy for preliminary design and selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese insere-se na área da simulação de circuitos de RF e microondas, e visa o estudo de ferramentas computacionais inovadoras que consigam simular, de forma eficiente, circuitos não lineares e muito heterogéneos, contendo uma estrutura combinada de blocos analógicos de RF e de banda base e blocos digitais, a operar em múltiplas escalas de tempo. Os métodos numéricos propostos nesta tese baseiam-se em estratégias multi-dimensionais, as quais usam múltiplas variáveis temporais definidas em domínios de tempo deformados e não deformados, para lidar, de forma eficaz, com as disparidades existentes entre as diversas escalas de tempo. De modo a poder tirar proveito dos diferentes ritmos de evolução temporal existentes entre correntes e tensões com variação muito rápida (variáveis de estado activas) e correntes e tensões com variação lenta (variáveis de estado latentes), são utilizadas algumas técnicas numéricas avançadas para operar dentro dos espaços multi-dimensionais, como, por exemplo, os algoritmos multi-ritmo de Runge-Kutta, ou o método das linhas. São também apresentadas algumas estratégias de partição dos circuitos, as quais permitem dividir um circuito em sub-circuitos de uma forma completamente automática, em função dos ritmos de evolução das suas variáveis de estado. Para problemas acentuadamente não lineares, são propostos vários métodos inovadores de simulação a operar estritamente no domínio do tempo. Para problemas com não linearidades moderadas é proposto um novo método híbrido frequência-tempo, baseado numa combinação entre a integração passo a passo unidimensional e o método seguidor de envolvente com balanço harmónico. O desempenho dos métodos é testado na simulação de alguns exemplos ilustrativos, com resultados bastante promissores. Uma análise comparativa entre os métodos agora propostos e os métodos actualmente existentes para simulação RF, revela ganhos consideráveis em termos de rapidez de computação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design – including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This present study aimed to investigate the fatigue life of unused (new) endodontic instruments made of NiTi with control memory by Coltene™ and subjected to the multi curvature of a mandibular first molar root canal. Additionally, the instrument‟s structural behaviour was analysed through non-linear finite element analysis (FEA). The fatigue life of twelve Hyflex™ CM files was assessed while were forced to adopt a stance with multiple radius of curvature, similar to the ones usually found in a mandibular first molar root canal; nine of them were subjected to Pecking motion, a relative movement of axial type. To achieve this, it was designed an experimental setup with the aim of timing the instruments until fracture while worked inside a stainless steel mandibular first molar model with relative axial motion to simulate the pecking motion. Additionally, the model‟s root canal multi-curvature was confirmed by radiography. The non-linear finite element analysis was conducted using the computer aided design software package SolidWorks™ Simulation, in order to define the imposed displacement required by the FEA, it was necessary to model an endodontic instrument with simplified geometry using SolidWorks™ and subsequently analyse the geometry of the root canal CAD model. The experimental results shown that the instruments subjected to pecking motion displayed higher fatigue life values and higher lengths of fractured tips than those with only rotational relative movement. The finite element non-linear analyses shown, for identical conditions, maximum values for the first principal stress lower than the yield strength of the material and those were located in similar positions to the instrument‟s fracture location determined by the experimental testing results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La maladie des artères périphériques (MAP) se manifeste par une réduction (sténose) de la lumière de l’artère des membres inférieurs. Elle est causée par l’athérosclérose, une accumulation de cellules spumeuses, de graisse, de calcium et de débris cellulaires dans la paroi artérielle, généralement dans les bifurcations et les ramifications. Par ailleurs, la MAP peut être causée par d`autres facteurs associés comme l’inflammation, une malformation anatomique et dans de rares cas, au niveau des artères iliaques et fémorales, par la dysplasie fibromusculaire. L’imagerie ultrasonore est le premier moyen de diagnostic de la MAP. La littérature clinique rapporte qu’au niveau de l’artère fémorale, l’écho-Doppler montre une sensibilité de 80 à 98 % et une spécificité de 89 à 99 % à détecter une sténose supérieure à 50 %. Cependant, l’écho-Doppler ne permet pas une cartographie de l’ensemble des artères des membres inférieurs. D’autre part, la reconstruction 3D à partir des images échographiques 2D des artères atteintes de la MAP est fortement opérateur dépendant à cause de la grande variabilité des mesures pendant l’examen par les cliniciens. Pour planifier une intervention chirurgicale, les cliniciens utilisent la tomodensitométrie (CTA), l’angiographie par résonance magnétique (MRA) et l’angiographie par soustraction numérique (DSA). Il est vrai que ces modalités sont très performantes. La CTA montre une grande précision dans la détection et l’évaluation des sténoses supérieures à 50 % avec une sensibilité de 92 à 97 % et une spécificité entre 93 et 97 %. Par contre, elle est ionisante (rayon x) et invasive à cause du produit de contraste, qui peut causer des néphropathies. La MRA avec injection de contraste (CE MRA) est maintenant la plus utilisée. Elle offre une sensibilité de 92 à 99.5 % et une spécificité entre 64 et 99 %. Cependant, elle sous-estime les sténoses et peut aussi causer une néphropathie dans de rares cas. De plus les patients avec stents, implants métalliques ou bien claustrophobes sont exclus de ce type d`examen. La DSA est très performante mais s`avère invasive et ionisante. Aujourd’hui, l’imagerie ultrasonore (3D US) s’est généralisée surtout en obstétrique et échocardiographie. En angiographie il est possible de calculer le volume de la plaque grâce à l’imagerie ultrasonore 3D, ce qui permet un suivi de l’évolution de la plaque athéromateuse au niveau des vaisseaux. L’imagerie intravasculaire ultrasonore (IVUS) est une technique qui mesure ce volume. Cependant, elle est invasive, dispendieuse et risquée. Des études in vivo ont montré qu’avec l’imagerie 3D-US on est capable de quantifier la plaque au niveau de la carotide et de caractériser la géométrie 3D de l'anastomose dans les artères périphériques. Par contre, ces systèmes ne fonctionnent que sur de courtes distances. Par conséquent, ils ne sont pas adaptés pour l’examen de l’artère fémorale, à cause de sa longueur et de sa forme tortueuse. L’intérêt pour la robotique médicale date des années 70. Depuis, plusieurs robots médicaux ont été proposés pour la chirurgie, la thérapie et le diagnostic. Dans le cas du diagnostic artériel, seuls deux prototypes sont proposés, mais non commercialisés. Hippocrate est le premier robot de type maitre/esclave conçu pour des examens des petits segments d’artères (carotide). Il est composé d’un bras à 6 degrés de liberté (ddl) suspendu au-dessus du patient sur un socle rigide. À partir de ce prototype, un contrôleur automatisant les déplacements du robot par rétroaction des images échographiques a été conçu et testé sur des fantômes. Le deuxième est le robot de la Colombie Britannique conçu pour les examens à distance de la carotide. Le mouvement de la sonde est asservi par rétroaction des images US. Les travaux publiés avec les deux robots se limitent à la carotide. Afin d’examiner un long segment d’artère, un système robotique US a été conçu dans notre laboratoire. Le système possède deux modes de fonctionnement, le mode teach/replay (voir annexe 3) et le mode commande libre par l’utilisateur. Dans ce dernier mode, l’utilisateur peut implémenter des programmes personnalisés comme ceux utilisés dans ce projet afin de contrôler les mouvements du robot. Le but de ce projet est de démontrer les performances de ce système robotique dans des conditions proches au contexte clinique avec le mode commande libre par l’utilisateur. Deux objectifs étaient visés: (1) évaluer in vitro le suivi automatique et la reconstruction 3D en temps réel d’une artère en utilisant trois fantômes ayant des géométries réalistes. (2) évaluer in vivo la capacité de ce système d'imagerie robotique pour la cartographie 3D en temps réel d'une artère fémorale normale. Pour le premier objectif, la reconstruction 3D US a été comparée avec les fichiers CAD (computer-aided-design) des fantômes. De plus, pour le troisième fantôme, la reconstruction 3D US a été comparée avec sa reconstruction CTA, considéré comme examen de référence pour évaluer la MAP. Cinq chapitres composent ce mémoire. Dans le premier chapitre, la MAP sera expliquée, puis dans les deuxième et troisième chapitres, l’imagerie 3D ultrasonore et la robotique médicale seront développées. Le quatrième chapitre sera consacré à la présentation d’un article intitulé " A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of B-mode images" qui résume les résultats obtenus dans ce projet de maîtrise. Une discussion générale conclura ce mémoire. L’article intitulé " A 3D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility " de Marie-Ange Janvier et al dans l’annexe 3, permettra également au lecteur de mieux comprendre notre système robotisé. Ma contribution dans cet article était l’acquisition des images mode B, la reconstruction 3D et l’analyse des résultats pour le patient sain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films