824 resultados para Computer Communication Networks


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Linking the physical world to the Internet, also known as the Internet of Things, has increased available information and services in everyday life and in the Enterprise world. In Enterprise IT an increasing number of communication is done between IT backend systems and small IoT devices, for example sensor networks or RFID readers. This introduces some challenges in terms of complexity and integration. We are working on the integration of IoT devices into Enterprise IT by leveraging SOA techniques and Semantic Web technologies. We present a SOA based integration platform for connecting WSNs and large enterprise business processes. For ensuring interoperability our platform is based on Linked Services. These are thoroughly described, machine-readable, machine-reasonable service descriptions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtualisation of cellular networks can be seen as a way to significantly reduce the complexity of processes, required nowadays to provide reliable cellular networks. The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission that is focusing on cloud computing concepts to achieve virtualisation of cellular networks. It aims at the development of a fully cloud-based mobile communication and application platform, or more specifically, it aims to investigate, implement and evaluate the technological foundations for the mobile communication system of Long Term Evolution (LTE), based on Mobile Network plus Decentralized Computing plus Smart Storage offered as one atomic service: On-Demand, Elastic and Pay-As-You-Go. This paper provides a brief overview of the MCN project and discusses the challenges that need to be solved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Online courses will play a key role in the high-volume Informatics education required to train the personnel that will be necessary to fulfill the health IT needs of the country. Online courses can cause feelings of isolation in students. A common way to address these feelings is to hold synchronous online "chats" for students. Conventional chats, however, can be confusing and impose a high extrinsic cognitive load on their participants that hinders the learning process. In this paper we present a qualitative analysis that shows the causes of this high cognitive load and our solution through the use of a moderated chat system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of pesticides and fertilizers in agricultural areas is of crucial importance for crop yields. The use of aircrafts is becoming increasingly common in carrying out this task mainly because of their speed and effectiveness in the spraying operation. However, some factors may reduce the yield, or even cause damage (e.g., crop areas not covered in the spraying process, overlapping spraying of crop areas, applying pesticides on the outer edge of the crop). Weather conditions, such as the intensity and direction of the wind while spraying, add further complexity to the problem of maintaining control. In this paper, we describe an architecture to address the problem of self-adjustment of the UAV routes when spraying chemicals in a crop field. We propose and evaluate an algorithm to adjust the UAV route to changes in wind intensity and direction. The algorithm to adapt the path runs in the UAV and its input is the feedback obtained from the wireless sensor network (WSN) deployed in the crop field. Moreover, we evaluate the impact of the number of communication messages between the UAV and the WSN. The results show that the use of the feedback information from the sensors to make adjustments to the routes could significantly reduce the waste of pesticides and fertilizers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information Centric Networking (ICN) as an emerging paradigm for the Future Internet has initially been rather focusing on bandwidth savings in wired networks, but there might also be some significant potential to support communication in mobile wireless networks as well as opportunistic network scenarios, where end systems have spontaneous but time-limited contact to exchange data. This chapter addresses the reasoning why ICN has an important role in mobile and opportunistic networks by identifying several challenges in mobile and opportunistic Information-Centric Networks and discussing appropriate solutions for them. In particular, it discusses the issues of receiver and source mobility. Source mobility needs special attention. Solutions based on routing protocol extensions, indirection, and separation of name resolution and data transfer are discussed. Moreover, the chapter presents solutions for problems in opportunistic Information-Centric Networks. Among those are mechanisms for efficient content discovery in neighbour nodes, resume mechanisms to recover from intermittent connectivity disruptions, a novel agent delegation mechanisms to offload content discovery and delivery to mobile agent nodes, and the exploitation of overhearing to populate routing tables of mobile nodes. Some preliminary performance evaluation results of these developed mechanisms are provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require real-time video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we describe dynamic unicast to increase communication efficiency in opportunistic Information-centric networks. The approach is based on broadcast requests to quickly find content and dynamically creating unicast links to content sources without the need of neighbor discovery. The links are kept temporarily as long as they deliver content and are quickly removed otherwise. Evaluations in mobile networks show that this approach maintains ICN flexibility to support seamless mobile communication and achieves up to 56.6% shorter transmission times compared to broadcast in case of multiple concurrent requesters. Apart from that, dynamic unicast unburdens listener nodes from processing unwanted content resulting in lower processing overhead and power consumption at these nodes. The approach can be easily included into existing ICN architectures using only available data structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information-centric networking (ICN) enables communication in isolated islands, where fixed infrastructure is not available, but also supports seamless communication if the infrastructure is up and running again. In disaster scenarios, when a fixed infrastructure is broken, content discovery algorit hms are required to learn what content is locally available. For example, if preferred content is not available, users may also be satisfied with second best options. In this paper, we describe a new content discovery algorithm and compare it to existing Depth-first and Breadth-first traversal algorithms. Evaluations in mobile scenarios with up to 100 nodes show that it results in better performance, i.e., faster discovery time and smaller traffic overhead, than existing algorithms.