887 resultados para Comprida Island
Resumo:
The Moorea Coral Reef Long Term Ecological Research project funded by the US National Science Foundation includes multidisciplinary studies of physical processes driving ecological dynamics across the fringing reef, back reef, and fore reef habitats of Moorea, French Polynesia. A network of oceanographic moorings and a variety of other approaches have been used to investigate the biological and biogeochemical aspects of water transport and retention processes in this system. There is evidence to support the hypothesis that a low-frequency counterclockwise flow around the island is superimposed on the relatively strong alongshore currents on each side of the island. Despite the rapid flow and flushing of the back reef, waters over the reef display chemical and biological characteristics distinct from those offshore. The patterns include higher nutrient and lower dissolved organic carbon concentrations, distinct microbial community compositions among habitats, and reef assemblages of zooplankton that exhibit migration behavior, suggesting multigenerational residence on the reef. Zooplankton consumption by planktivorous fish on the reef reflects both retention of reef-associated taxa and capture by the reef community of resources originating offshore. Coral recruitment and population genetics of reef fishes point to retention of larvae within the system and high recruitment levels from local adult populations. The combined results suggest that a broad suite of physical and biological processes contribute to high retention of externally derived and locally produced organic materials within this island coral reef system. © 2013 by The Oceanography Society. All rights reserved.
Resumo:
Analysis of five-year records of temperatures and currents collected at Moorea reveal strong internal wave activity at predominantly semi-diurnal frequencies impacting reef slopes at depths 30m around the entire island. Temperature changes of 1.5C to 3C are accompanied by surges of upward and onshore flow and vertical shear in onshore currents. Superimposed on annual temperature changes of approximately 3C, internal wave activity is high from Oct-May and markedly lower from Jun-Sep. The offshore pycnocline is broadly distributed with continuous stratification to at least 500m depth, and a subsurface fluorescence maximum above the strong nutricline at approximately 200m. Minimum buoyancy periods range from 4.8 to 6min, with the maximum density gradient occurring at 50 to 60m depth in summer and deepening to approximately 150 to 200m in winter. The bottom slope angle around all of Moorea is super-critical relative to the vertical stratification angle suggesting that energy propagating into shallow water is only a portion of total incident internal wave energy. Vertical gradient Richardson numbers indicate dominance by density stability relative to current shear with relatively limited diapycnal mixing. Coherence and lagged cross-correlation of semi-diurnal temperature variation indicate complex patterns of inter-site arrival of internal waves and no clear coherence or lagged correlation relationships among island sides. Semi-diurnal and high frequency internal wave packets likely arrive on Moorea from a combination of local and distant sources and may have important impacts for nutrient and particle fluxes in deep reef environments. © 2012 American Geophysical Union. All Rights Reserved.
Resumo:
A new species of the copepod genus Tortanus (Atortus) (Copepoda: Calanoida), T. (A.) insularis, is described from the coastal region of Rodrigues Island, Mauritius, an isolated island in the south-western Indian Ocean. This new species can be assigned to an Indian element, the recticauda species group, in the Indo-West Pacific recticauda species complex. It exhibits the closest relationship to T. (A.) recticauda recorded from the southern Red Sea and Arabian Gulf, rather than the more closely distributed T. (A.) capensis, recorded from off South Africa.
Resumo:
The oceanic Indian Ocean zooplankton species and their distributions have been well described, but the zooplankton of coastal regions, particularly around the oceanic islands, has not been well researched, either taxonomically or experimentally. The environment of the Mascarene region in the southwestern Indian Ocean and zooplankton research that has been carried out there is detailed, along with gaps in our knowledge. Suggestions are given for future research, particularly on the zooplankton species adapted to live in the fluctuating environment of inshore waters, including studies on taxonomy and biodiversity, life cycles, dispersion and genetics. Problems of carrying out taxonomic research are highlighted.
Resumo:
Studies on the flora and fauna of the Canary Islands show that this Archipelago is one of the planet’s diversity hot spots. However, an analysis of the differences in the phytogeographic characteristics of each of the islands that make up this Archipelago is lacking. This article focuses on the phytogeographic characterization of the island of Gran Canaria. This island exhibits geological and climatic characteristics resulting in a rich vascular flora, including endemic species and genera that are significantly different from the other islands of the Archipelago. These differences are verified through statistical analysis of the existing similarity between the floras of the members of the Canary Islands. This study also analyses the subdivision of Gran Canaria Island, indicating that there are three well-differentiated areas on the island itself. Finally, this study argues that these areas, themselves, should be considered biogeographic sectors.