996 resultados para Compliant mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrrolysyl-tRNA synthetase (PyIRS) is an atypical enzyme responsible for charging tRNA(Pyl) with pyrrolysine, despite lacking precise tRNA anticodon recognition. This dimeric protein exhibits allosteric regulation of function, like any other tRNA synthetases. In this study we examine the paths of allosteric communication at the atomic level, through energy-weighted networks of Desulfitobacterium hafniense PyIRS (DhPyIRS) and its complexes with tRNA(Pyl) and activated pyrrolysine. We performed molecular dynamics simulations of the structures of these complexes to obtain an ensemble conformation-population perspective. Weighted graph parameters relevant to identifying key players and ties in the context of social networks such as edge/node betweenness, closeness index, and the concept of funneling are explored in identifying key residues and interactions leading to shortest paths of communication in the structure networks of DhPylRS. Further, the changes in the status of important residues and connections and the costs of communication due to ligand induced perturbations are evaluated. The optimal, suboptimal, and preexisting paths are also investigated. Many of these parameters have exhibited an enhanced asymmetry between the two subunits of the dimeric protein, especially in the pretransfer complex, leading us to conclude that encoding of function goes beyond the sequence/structure of proteins. The local and global perturbations mediated by appropriate ligands and their influence on the equilibrium ensemble of conformations also have a significant role to play in the functioning of proteins. Taking a comprehensive view of these observations, we propose that the origin of many functional aspects (allostery rand half-sites reactivity in the case of DhPyIRS) lies in subtle rearrangements of interactions and dynamics at a global level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mechanism of target recognition and repair is not known completely. All these aspects of DNA damage and repair have been addressed here by employing high level density functional theory in gas phase and aqueous medium. It is found that the actual cause of O6MG mediated mutation may arise due to the fact that DNA polymerases incorporate thymine opposite to O6MG, misreading the resulting O6MG:T complex as an A:T base pair due to their analogous binding energies and structural alignments. It is further revealed that AGT mediated nucleotide flipping occurs in two successive steps. The intercalation of the finger residue Arg 128 into the DNA double helix and its interaction with the O6MG: C base pair followed by rotation of the O6MG nucleotide are found to be crucial for the damage recognition and nucleotide flipping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein MsRbpA from Mycobacterium smegmatis rescues RNA polymerase (RNAP) from the inhibitory effect of rifampicin (Rif). We have reported previously that MsRbpA interacts with the beta-subunit of RNAP and that the effect of MsRbpA on Rif-resistant (Rif(R)) RNAP is minimal. Here we attempted to gain molecular insights into the mechanism of action of this protein with respect to its role in rescuing RNAP from Rif-mediated transcription inhibition. Our experimental approach comprised multiple-round transcription assays, fluorescence spectroscopy, MS and surface plasmon resonance in order to meet the above objective. Based on our molecular studies we propose here that Rif is released from its binding site in the RNAP-Rif complex in the presence of MsRbpA. Biophysical studies reveal that the location of MsRbpA on RNAP is at the junction of the beta- and beta'-subunits, close to the Rif-binding site and the (i + 1) site on RNAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents concepts, designs, and working prototypes of enhanced laparoscopic surgical tools. The enhancements are in equipping the tool with force and temperature sensing as well as image acquisition for stereo vision. Just as the pupils of our eyes are adequately spaced out and the distance between them is adjustable, two minute cameras mounted on a mechanism in our design can be moved closer or farther apart inside the inflated abdomen during the surgery. The cameras are fitted to a deployable mechanism consisting of flexural joints so that they can be inserted through a small incision and then deployed and moved as needed.A temperature sensor and a force sensor are mounted on either of the gripping faces of the surgical grasping tool to measure the temperature and gripping force, which need to be controlled for safe laparoscopic surgery. The sensors are small enough and hence they do not cause interference during surgery and insertion.Prototyping and working of the enhanced laparoscopic tool are presented with details

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of 503 available triosephosphate isomerase sequences revealed nine fully conserved residues. Of these, four residues-K12, H95, E97 and E165-are capable of proton transfer and are all arrayed around the dihydroxyacetone phosphate substrate in the three-dimensional structure. Specific roles have been assigned to the residues K12, H95 and E165, but the nature of the involvement of E97 has not been established. Kinetic and structural characterization is reported for the E97Q and E97D mutants of Plasmodium falciparum triosephosphate isomerase (Pf TIM). A 4000-fold reduction in k(cat) is observed for E97Q, whereas the E97D mutant shows a 100-fold reduction. The control mutant, E165A, which lacks the key catalytic base, shows an approximately 9000-fold drop in activity. The integrity of the overall fold and stability of the dimeric structure have been demonstrated by biophysical studies. Crystal structures of E97Q and E97D mutants have been determined at 2.0 angstrom resolution. In the case of the isosteric replacement of glutamic acid by glutamine in the E97Q mutant a large conformational change for the critical K12 side chain is observed, corresponding to a trans-to-gauche transition about the C gamma-C delta (chi(3)) bond. In the E97D mutant, the K12 side chain maintains the wild-type orientation, but the hydrogen bond between K12 and D97 is lost. The results are interpreted as a direct role for E97 in the catalytic proton transfer cycle. The proposed mechanism eliminates the need to invoke the formation of the energetically unfavourable imidazolate anion at H95, a key feature of the classical mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel designs for two-axis, high-resolution, monolithic inertial sensors are presented in this paper. Monolithic, i.e., joint-less single-piece compliant designs are already common in micromachined inertial sensors such as accelerometers and gyroscopes. Here, compliant mechanisms are used not only to achieve de-coupling between motions along two orthogonal axes but also to amplify the displacements of the proof-mass. Sensitivity and resolution capabilities are enhanced because the amplified motion is used for sensing the measurand. A particular symmetric arrangement of displacement-amplifying compliant mechanisms (DaCMs) leads to de-coupled and amplified motion. An existing DaCM and a new topology-optimized DaCM are presented as a building block in the new arrangement. A spring-mass-lever model is presented as a lumped abstraction of the new arrangement. This model is useful for arriving at the optimal parameters of the DaCM and for performing system-level simulation. The new designs improved the performance by a factor of two or more.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this paper is on designing useful compliant micro-mechanisms of high-aspect-ratio which can be microfabricated by the cost-effective wet etching of (110) orientation silicon (Si) wafers. Wet etching of (110) Si imposes constraints on the geometry of the realized mechanisms because it allows only etch-through in the form of slots parallel to the wafer's flat with a certain minimum length. In this paper, we incorporate this constraint in the topology optimization and obtain compliant designs that meet the specifications on the desired motion for given input forces. Using this design technique and wet etching, we show that we can realize high-aspect-ratio compliant micro-mechanisms. For a (110) Si wafer of 250 µm thickness, the minimum length of the etch opening to get a slot is found to be 866 µm. The minimum achievable width of the slot is limited by the resolution of the lithography process and this can be a very small value. This is studied by conducting trials with different mask layouts on a (110) Si wafer. These constraints are taken care of by using a suitable design parameterization rather than by imposing the constraints explicitly. Topology optimization, as is well known, gives designs using only the essential design specifications. In this work, we show that our technique also gives manufacturable mechanism designs along with lithography mask layouts. Some designs obtained are transferred to lithography masks and mechanisms are fabricated on (110) Si wafers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topology optimization problem for the synthesis of compliant mechanisms has been formulated in many different ways in the last 15 years, but there is not yet a definitive formulation that is universally accepted. Furthermore, there are two unresolved issues in this problem. In this paper, we present a comparative study of five distinctly different formulations that are reported in the literature. Three benchmark examples are solved with these formulations using the same input and output specifications and the same numerical optimization algorithm. A total of 35 different synthesis examples are implemented. The examples are limited to desired instantaneous output direction for prescribed input force direction. Hence, this study is limited to linear elastic modeling with small deformations. Two design parameterizations, namely, the frame element based ground structure and the density approach using continuum elements, are used. The obtained designs are evaluated with all other objective functions and are compared with each other. The checkerboard patterns, point flexures, the ability to converge from an unbiased uniform initial guess, and the computation time are analyzed. Some observations are noted based on the extensive implementation done in this study. Complete details of the benchmark problems and the results are included. The computer codes related to this study are made available on the internet for ready access.